Phase II (2019-'21) |
---|
II P1: FIRE Induced Element Cycling II P2: Nutrient cycling & vegetation II P3: Microorganisms & soil structure II P4: Linking bioturbation with fluxes II P5: Erosion-Climate-Vegetation coupling (SECCO) II P6: Bio-Geomorphology II P7: Biota, fracture, thresholds II P8: Stress constrained landscape modeling II P9: Bridging timescales with modeling II P10: Landscape evolution from Thermochronology II P11: DeepES - Weathering Geochemistry II P12: DeepES - Microbial element cycling II P13: DeepES - Geophysical Imaging II P14: DeepES - Microbial activity II P15: DeepES - Geomicrobiology II A1: Plant available water storage II A2: Bioweath |
Phase I (2016-'18) |
---|
I P1: Plant Traits and Decomposition I P2: Coupled Modelling I P3: Biofilms & Weathering I P4: Sediment storage & Connectivity I P5: Crustweathering I P6: Root Carbon I P7: Paleoclimate I P8: Imaging of Weathering front I P9: Sediment Transport I P10: Phosphorus solubilization I P11: Green & Grey world I P12: Biogenic Weathering I P13: Microbiological Stabilization I A3: Carbon & Nutrient Fluxes |
Investigator Names and Contact Info:
Chilean Collaborators Involved:
Postdoc Project 2b:
Supervisor: Prof. Thomas Hickler, Co-supervisor: Prof. Todd Ehlers
PhD Project 2a:
Supervisor: Prof. Todd Ehlers, Co-supervisor: Prof. Thomas Hickler
MSc (2a):
Supervisor: Prof. Todd Ehlers
MSc (2a):
Supervisor: Prof. Todd Ehlers, Co- Supervisor: Dr. Sebastian Mutz
MSc (2a):
Supervisor: Prof. Todd Ehlers, Co- Supervisor: Dr. Sebastian Mutz
MSc (2a):
Supervisor: Prof. Todd Ehlers, Co-Supervisor: Dr. Sebastian Mutz
MSc (2a):
Supervisor: Prof. Todd Ehlers, Co- Supervisor: Dr. Sebastian Mutz
BSc (2a):
Supervisor: Prof. Todd Ehlers, Co-Supervisor: Dr. Kirstin Übernickel
BSc (2a):
Supervisor: Prof. Todd Ehlers, Co-Supervisor: Dr. Kirstin Übernickel
Project Summary:
BioScapes I is part of a series of independent EARTHSHAPE proposals that quantifies biotic, surface process, and paleoclimate interactions at the catchment scale and larger. In this contribution, we propose for the first time a coupling between state-of-the-art paleoclimate, dynamic vegetation, and surface process numerical models using high-performance computing. These models will be applied to test three of the original EARTHSHAPE hypotheses, as well as four related key scientific questions identified here. Model results will be used to evaluate the sensitivity of surface processes and topography to different climate and vegetation forcing. Our new coupled modeling approach will quantify how the individual and combined contributions of continuous climate and vegetation change from the LGM to present have influenced the erosion, sedimentation, and morphology (relief, fluvial profiles, hillslope geometry, drainage density, etc) of the EARTHSHAPE study areas in the Coastal Cordillera, Chile. Model results will be compared to existing observations (topography, paleovegetation and paleoclimate proxies), as well as new observations (erosion and sedimentation rates, palynology, etc) collected as part of the EARTHSHAPE program. Our approach bridges a diverse range of timescales ranging from hours to tens-of-thousands of years, and provides a physics-based integration of diverse EARTHSHAPE products essential to the success of this priority program. In summary, the key items delivered from this study include: 1) downscaled quantification of climate and vegetation changes in Chile from the LMG (~21 ka) to present using an ensemble of climate models; 2) quantification of how erosion and sedimentation rates in the EARTHSHAPE focus areas have responded to the legacy of these temporal changes; and 3) identification of the individual roles and relative significance of climate vs vegetation change on catchment evolution along a latitudinal transect of catchments encompassing one of Earth’s largest ecological and climate gradients. These goals are achieved through the new pairing of investigators with extensive prior experience in the fields of biogeography (dynamic vegetation modeling) and geology/geophysics (paleoclimate and landscape evolution modeling).