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1 Summary

The present work has been performed in the framework of the research project AQUAPAST. The

main focus of AQUAPAST is the reconstruction of past climate changes in the Alpine and the

Mediterranean regions based on the analysis of the isotopic content of cave speleothems in the

Trentino Province.

This research is motivated by the need to study the climate of the past in order to understand and

detect the causes of the climate changes we are witnessing today (ICCP, 2001), and, if possible,

to provide the basis for simulating future scenarios by means of suitable global climate models

(GCM). The interest of the scientific community in the climate changes of the past is proved by

the increasing amount of papers (Ayalon et al., 1998; Baldini et al., 2002; McDermott et al., 2001;

Genty et al., 2003), workshops and reports. In particular, the target of the climatological studies

is to understand the climate response to both the natural (solar -Hansen et al., 1997-, volcanic and

so on) and anthropogenic forcing (greenhouse gases -WMO, 1999-, sulfate aereosol). The most

monitored variables to detect climate changes are air temperature and precipitation. Besides over-

all properties of the series of daily or monthly average of these variables the frequency of extreme

values are investigated. The analysis can be refined by studying the evolution of the previous vari-

ables on a regional scale pointing out local variabilities in atmospheric and oceanic circulations:

El Niño-Southern Oscillation (ENSO), Monsoons, the North Atlantic Oscillation (NAO), the Artic

Oscillation (AO) and so on. In fact the project AQUAPAST aims also at relating the past clima-

tological changes to modifications in the atmospheric circulation and in particular in the water

vapour transport mechanism over the Mediterranean region.

The contribution of the present Thesis to the research project consists in setting up a methodology

for the reconstruction and the analysis of the airstreams governing the transport of water vapour

to the Trentino area. The technique requires as input the output of both global meteorological and

climatological models. A testing phase was necessary whereby the methodology has to be applied

to the study of strong precipitation events occurring in the last decades over the Alps.

The Alps affect atmospheric dynamics on a broad range of horizontal scales (as classified by
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1. Summary

Orlanski, 1975), the most relevant ones ranging from the meso-α (e.g. lee cyclogenesis and mod-
ification of upper level troughs, Tibaldi et al., 1990), through meso-β (e.g. modification of fronts
by orography, Hoinka et al., 1990; Buzzi and Alberoni, 1992) up to the meso-γ (e.g. circulations
in individual valleys and inside individual clouds).

Recent studies, especially those developed in connection with the Mesoscale Alpine Programe

(Bougeault et al., 2001), have focused on the synoptic-scale situations which are most likely to

produce severe precipitation events in the southern Alpine region. The physical mechanism of

orographic precipitation has been explored in depth (Buzzi et al., 2003; Gheusi and Stein, 2002;

Medina and Houze, 2003; Rotunno and Ferretti, 2001, 2003). However, at present little is known

about the relationship between detectable local and regional flow structures and the larger scale

processes determining the moisture fluxes at lower atmospheric levels and the water vapour trans-

port and evaluation at upper levels.

Isotopic composition of water can be used as suitable tracer to detect the origin of precipitating

water. Measurements of the isotopic composition of precipitated water samples show that oxygen

and hydrogen isotopes may vary considerably depending on the measurement location and the

area where precipitating water originally evaporated (Longinelli and Selmo, 2003). The history

of water vapour can be also evaluated from the meteorological analysis of data and from the re-

construction of trajectories associated with precipitating systems. Lagrangian analysis provides a

method to understand the relationship between precipitation in a certain region and recurring spe-

cific meteorological features, such as PV-streamers (Massacand et al., 1998; Wernli et al., 2002) or

peculiar interactions between large scale patterns of transport of water vapour in far regions where

the air masses come from (Keil et al., 1999).

A detailed discussion on the motivations of the project AQUAPAST, as well as of the present

work, is proposed in chapter 2, where the atmospheric mechanisms governing the water transport

of vapour during cyclonic events are discussed in detail along with the method of Lagrangian anal-

ysis as an optimal way to understand them.

Chapter 3 provides a review of literature about the techniques of trajectory computation. In par-

ticular the various types of errors affecting the computation and their order of magnitude are

estimated and discussed. As an example the numerous applications of the trajectory techniques to

the long range pollution transport are briefly sketched. Finally an introduction is reported to the

applications available so far in literature about this method to the transport of water vapour.

The choice of the case studies to test the Lagrangian analysis as well as the results from the com-

putation of ensembles of back trajectories are shown in chapter 4. The selected events are the

flood events of 3-5 November 1966, 16-18 November 2000 and 24-26 November 2002. Empha-
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sis is given to the regional budget analysis over the Mediterranean basin and in particular to the

estimation of the evaporation fluxes contributing to increase the moisture content of airstreams

producing intense precipitation over the Alps during the selected events.

The identification of the flow patterns mostly contributing to precipitation requires suitable gath-

ering of the ensemble trajectories into few most remarkable bundles. Clustering techniques ap-

plied to this purpose are presented in chapter 5. The attention here is mainly concentrated on

the adoption of the most suitable phase space where trajectories can be represented as points and

the "distance" between two trajectories is easily evaluated as the euclidean distance between the

respective points. This allows for gathering similar trajectories of the ensemble to obtain a small

number of clusters (cf. also Bertò et al., 2004).

Chapter 6 outlines comments and results deriving both from the budget and the cluster analysis

and a conceptual model describing the airstreams flowing over the Mediterranean basin during

extreme precipitation events is proposed. This provides a preliminary basis for the classification

of meteorological situations producing intense precipitation events over selected target area in the

Alps. Finally a preliminary test of the sensitivity of the trajectory method to the resolution of input

data is reported.

The conclusions as well as possible future developments are summarized in chapter 7.
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2 A general overview and formulation of the
problem

In recent years it has been more and more frequent to hear about extreme precipitation events. The

growing attention to these phenomena can be partially explained by the role of media in spreading

information and to hit the sensitivity of the public. Indeed the frequency of tropical hurricanes,

which are the most impressive among extreme events (in 2004 they caused a lot of damages in

Japan, in the Caribbean islands and in the South of USA), is not increasing (ICCP, 2001). No

appreciable variation has been ever registered in the number and in the intensity of the storms

associated to the Indian monsoon affecting the South-East of Asia. On the contrary the ICCP

stresses that a widespread increase in the heavy and extreme precipitation events has been found

in regions where total precipitation has increased, e.g. the mid- and high latitudes of the Northern

Hemisphere. This is the case of the flood event in the Central Europe in 2002 (Fig. 2.2, 2.1), of the

flash floods in the western Mediterranean basin (in Morocco in 2002, in Spain and in the south of

France in 2003, in Sardinia in December 2004) and of the severe storms hitting the Alps in the 90s

(a summary can be found in CIPRA, 2002). As opposed to extreme precipitation events, frequent

extreme drought events occurr. A remarkable case was provided by the summer of 2003 in Europe

as well as by many winters without snow over the Alps in the ’90s (CIPRA, 2002).
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Figure 2.1: Region of the Central Europe interested by floods in the August of 2002
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Figure 2.2: Flooded villages, factories and fields in the surroundings of Dresden in the August of 2002
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Most of the engineering applications related to extreme weather events have connection with

"civil protection". In fact, the evaluation of the intensity of extreme weather events corresponding

to a specific return period is necessary to design the hydraulic structures and devices to be used

for the protection of people and social or economic activities. On the other hand, knowing the

frequency of occurrence of extreme or remarkable events is also crucial for the "water resource

management". For example, in the case of an extreme precipitation event, it can be useful to know

the V water reserve to meet the agricultural, energetic and human needs given a probability P of

no more precipitation in the next n months.

However, the classical engineering approach based on the statistical analysis of the historical in-

strumental records shows some limits. Firstly, they could be not sufficiently long (especially for

high return periods); furthermore they could be no longer useful since the sample results to be

"old". The latter situation can occur because the "climate system has a weak structural stability

with respect to the parameters which reflect the way the system is solicited by external forcing or

by the boundary conditions" (Nicolis, 2003). For example a small perturbation of the temperature

of the Gulf Current could lead to a sudden modification of the atmospheric circulation and of the

climate over Europe. So if a climate change is really occurring today the instrumental records are

no longer right for the engineering applications.

To understand whether a climate change is happening today the atmospheric circulation associated

to different climatological periods of the past can be studied.

2.1 The project AQUAPAST

The present work has been performed and financed in the framework of the project AQUAPAST.

AQUAPAST is a three-year project (2002-2004) coordinated by the Museo Tridentino di Scienze

Naturali (dr. S. Frisia) and funded by the Fondo Unico per la Ricerca of the Province of Trento.

The main focus of AQUAPAST is the reconstruction of past climate changes over the Alpine and

the Mediterranean regions based on the analysis of the isotopic content of cave speleothems in the

Trentino Province.

A cave is an isolated environment filtering the short term weather signal such as spurious effects. It

is therefore an optimal site (Fig.2.3) to monitor the seasonal evolution of temperature, precipitation

and many other physical and chemical quantities (e.g. CO2 concentration).

The study of cave speleothemes, and in particular of stalagmites, provides further information

about the climate of the past. Firstly the sequence of laminae (Fig.2.4) results to be a relatively

easy and precise dating system. In fact it is possible to detect 2 different kinds of laminae for each

year, especially in the caves close to the surface: a dark lamina whose color is caused by the loam
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Figure 2.3: Sampling of dripping water in the cave of Giazzera cave (near Folgaria in the Province of Trento) during
the project AQUAPAST. The cave is characterized by various forms of speoleothemes: small stalactites
(hanging from the vault of the cave), stalagmites (rising up from the bottom) and some columns.

washed from the above terrain during persistent precipitation events, especially in autumn, and a

translucent lamina, slowly growing in spring and summer due to water dripping produced by ice

and snow melting.
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Figure 2.4: Example of stalagmite section taken away from the cave of Ernesto at the boundary between the Province
of Trento and the Region of Veneto. The main scale factor is the centimeter.
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Figure 2.5: Example of seasonal laminae observed in the section of a stalagmite from the cave of Ernesto. The dark
bands correspond to periods of persistent precipitation events when the loam is washed away from the
above terrain by the seeping water.
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Furthermore, the thickness of each lamina (Fig.2.5) gives information about the intensity of

precipitation and about the indoor temperature in past times.

The isotopic concentration in each lamina results to be a complementary quantity to derive conclu-

sions about the climate in past eras. The isotopic content of a sample is given by the δ-expression:
this provides the isotopic concentration anomaly in the sample with respect to the concentration

in standard (the re f erence content). Eq.2.1 exemplifies this definition with the formula used to

quantify the concentration of the isotope 18 of oxygen (Frisia et al., 2004).

δ18O �
�
m18O � m16O �

sample �
�
m18O � m16O �

re f erence

� m18O � m16O � re f erence (2.1)

The evolution of the isotopic content of δ13C and δ18O can be derived from the chemical analysis
of stalagmite.

Precipitating or melting water seeps into the soil and captures CO2 forming a weak acid which

dissolves the carbonates of rocks or the organic carbon of vegetation. When the water droplets

reach the cave, the partial pressure of CO2 in the cave air is less than in the solution. So CO2
degasses and CaCO3 precipitates contributing to the formation of a new lamina.

It is clear that δ13C composition depends on the origin of the carbon in the carbonate of stalagmites.
The δ13C is almost zero if the carbon derives from the surrounding rocks or atmosphere, while the
heavy isotopic concentration is depleted (δ13C = -27 %¸) if it derives from plants organic carbon.
The δ18O composition is determined by:

(a) the oxygen isotopic concentration of the water dripping from the cave ceiling

(b) the cave temperature

For any value of δ18O in dripping water the equation governing the isotopic content in the stalag-
mite is:

t � 16 � 9 � 4 � 2 � δ18Ocarb � δ18Owater � 	 0 � 13 � δ18Ocarb � δ18Owater � 2 (2.2)

where t is the temperature in centigrade degrees. Note that the higher is the temperature in the

cave, the most depleted is the isotopic concentration in the cave speleothemes.

In Fig.2.6 the evolution in time of δ13C and δ18O is reported from the analysis of a stalagmite
in the Ernesto cave (in Eastern Trentino, at the boundary with Veneto region). Starting from the

correlation of the two signals one can hypothesize the climate changes in the past eras in the area

of the cave (Frisia et al., 2004).

The objective of AQUAPAST is not only the analysis of the stalagmite records. The project also

aims to relating the past climatological changes to modifications in the atmospheric circulation
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Figure 2.6: Trend of the isotopic content of δ13C and δ18O from the analysis of the stalagmite of the Ernesto cave.
Possible interpretations of the correlation or of the anticorrelation between the two signals (Frisia et al.,
2004).

and in particular in the water vapour transport mechanism over the Mediterranean area. In fact,

beside the indoor temperature and the chemical reactions in the terrain, the isotopic concentration

of δ18O in the carbonate of cave speleothemes depends on the isotopic content in the precipitation
parcels. In turn, δ18O in the water vapour producing precipitation is determined by the type of
water sources (δ18O is equal to zero or lightly negative over the Atlantic Ocean, equal to

�

5

%o over the Mediterranean Sea, strongly negative over the mainland) and on the temperature of

condensation along the trajectory of the cloud fronts.

In fact Longinelli and Selmo (2003) showed that the distribution of the mean isotopic content in the

precipitated water over a time period of 1-8 years in the ’90s is strongly correlated to the orography

of the Italian peninsula (Fig.2.7). It seems to confirm the dependence of the isotopic signal on the

average height (and temperature) at which water vapour condenses producing precipitating water

Ayalon et al. (1998).
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Figure 2.7: Spatial distribution over the Italian peninsula of the mean isotopic content in the precipitated water
(Longinelli and Selmo, 2003). The δ18O concentration is equal to � 5 %o along the coasts and it de-
creases almost linearly with ground elevation.

To understand the climatological influence of the atmospheric circulation on the isotopic sig-

nal in speleothemes the path of single air parcel should be monitored. This can be done by means

of a suitable trajectory model, starting from the output of the Global Climate Models. The present

14
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work aims at setting up a methodology for the reconstruction and analysis of the air mass trajec-

tories governing the transport of water vapour.

The Lagrangian procedure has been developed and applied to recent precipitation events. More-

over, a sampling network (Fig.2.8) has been set up in Trentino during the entire duration of the

project (2002-2004) to compare the results of the numerical model with the δ18O content in col-
lected samples of precipitating water.

As an example, the average monthly isotopic signal in precipitated water is reported for Novem-

ber 2002 and November 2003 in Fig. 2.9. In November 2003 the isotopic concentration is lower

than in November 2002 (Fig.2.9). The difference has to be related to the origin of the air masses: in

November 2002 the southerly slopes of the Alps were affected by Mediterranean cyclonic systems

driving air masses from the South-West. In November 2003 they were hit by east-southeasterly

winds originating in the regions of Eastern of Europe. So in November 2003 the mean condensa-

tion temperature over the North of Italy was lower than in 2002, but the air masses were already

driving from the East water vapour with a weaker continental isotopic signal.

Note that the climatological analysis of the water vapour mechanisms should also explain the

atmospheric anomalies expressed by the NAO index (Fig.2.10).
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Figure 2.8: Climatological map of the average yearly precipitation ((Frei and Schär, 1998)). The dark blue color
corresponds to a daily precipitation larger than 2500 mm; the dark green color larger than 1400 mm;
the yellow-ocher color larger than 700 mm. Minima of 500 mm are registered in the Adige valley near
Egna-Ora, maxima of 3500 mm over the Monti Lessini. The light blue asterisks mark the positions of
the meteorological stations used for the monthly sampling of the precipitation water during the project
AQUAPAST (Frisia et al., 2004). The magenta asterisks mark the positions of the monitored caves.
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Figure 2.9: Plot of the mean monthly isotopic concentration in the precipitated water against the altitude of each
meteorological station (Fig.2.8) for November 2002 and for November 2003

Figure 2.10: Atmospheric circulation and distribution of the precipitation over Europe and over the North Atlantic
Ocean during the periods of positive and negative NAO. The positive pressure anomaly over the North
Atlantic favours the zonal flow, while a negative anomaly produces a deepening of the North Atlantic
through centers.
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The positive pressure anomaly (NAO+) over the North Atlantic Ocean favours the zonal flow

with precipitations over the north of Europe, while a negative anomaly (NAO-) produces a deep-

ening of the North Atlantic through centers enhancing the probability of floods in the western

Mediterranean basin. In the report of ICCP (2001) it is shown that in the last 3 decades Europe

Figure 2.11: December to March North Atlantic Oscillation (NAO) indices, 1864 to 2000, and
Arctic Oscillation (AO) indices, 1900 to 2000 (ICCP, 2001).

has been characterized by a dominant positive NAO signal (Fig. 2.11).

2.2 L arge scale forcing of the water vapour t ransport

In the present section some studies are presented about the synoptic scale mechanisms forcing

the transport of water vapour. These studies aim to reconstruct the water budget on a global

scale or, at least, on the scale of the northern hemisphere. Moreover they outline the way some

intense meteorological events (tropical storms) can influence the precipitation regime over the

Mediterranean basin.
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2.2.1 Tropical storms

Some authors have recently investigated the role of tropical storms in contributing to extreme

weather events over the Mediterranean region (Pinto et al., 2001; Reale et al., 2001). Pinto et al.

(2001) considered the 30 most extreme events from 1958 to 2000 over Northwest Italy moni-

toring their relationship with concomitant disturbances. Three different types of influences were

proposed after the climatological analysis (see figure 2.12):

A � A tropical system recurves over the Central North Atlantic and, after extratropical transition,

moves directly into the Western Mediterranean Basin (direct influence).

B � A tropical system recurvs over the Western or Central North Atlantic. The systems undergoes

a transition in an extratropical system cyclone, inducing strong humidity advection from the

subtropics to the extratropics, and part of the moisture is advected across the Atlantic over

the Central North Atlantic (indirect influence).

C � A tropical system, recurving near the US East Coast, connects with an approaching upper-

tropospheric mid-latitude trough. The extreme temperature contrasts between the tropical

and the extra-tropical air masses lead to a strong baroclinic development which induces the

development of a trough-ridge-trough system over the Atlantic. The eastern trough over the

Iberian Peninsula is located at the optimal geographical position to induce a south-westerly

flow from the Eastern Atlantic near coasts of Morocco into the Mediterranen (remote influ-

ence).
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Figure 2.12: Basic mechanism of extratropical-extratropical interaction related to extreme precipitation events over
the western Mediterranean Basin. Upper panel (case A), bottom left panel (case B), bottom right panel
(case C). From Pinto et al. (2001).

The influence type A � happens quite rarely; types B � and C � are the most common. The last

case (C � ) can justify the unusual deepening of a subtropical upper level through over the eastern

Atlantic reinforcing the tropical plumes flowing along the Africa coasts, marked by a dashed arrow

in the scheme of Pinto et al. (2001).

2.2.2 African tropical plumes

Other large scale features conditioning both the cyclogenesis and the cyclone deepening over the

temperate regions are the tropical plumes (TPs). They are evident as white quasi-stationary fea-

tures (either in the In f rared (I) images as bands of mid- and upper-level clouds -see figure 2.13-

or in the WaterVapour (WV) images as streams of moist air masses) having a lenght of several

thousand kilometers and extending poleward and eastward from the tropics into the subtropics

where the band typically recurves anticyclonically (McGuirk et al., 1987). TPs are common fea-

ture of tropical-extratropical interactions troughout the tropics, but they are particularly frequent
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over the eastern Pacific and the central Atlantic (Iskenderian, 1995) and often occur in the transi-

tion seasons (Kuhnel, 1989). These areas are well known as westerly ducts, where both westerlies

and transients from the midlatitudes are common. Knippertz et al. (2002) have investigated the

Figure 2.13: Meteosat WV satellite image at 1500 UTC 23 November 2002. A TP is evident over Mauritania,
Morocco and Algeria, while a midlatitude moist stream stretches over the Atlantic. Both air streams
seem to contribute to the subsequent cyclogenesis over the Mediterranean Sea.

evolution of African TPs flowing northward and eastward over the coasts of north-west Africa

(Mauritania and Morocco) showing that the TPs are closely related to the development of pro-

nounced upper-level troughs in the subtropical jet (STJ) at a latitude of 20 � N -30 � N. In summer

(June-August) upper level subtropical highs over Africa and the Atlantic build a high pressure belt

suppressing tropical-extratropical exchanges. The autumnal formation of troughs is not extraor-

dinary because of the reinforcement of the STJ (with Rossby waves inside it favouring the equa-

torward amplification and the zonal contraction of the jet) and the northernmost position of the

intertropical convergence zone (ITCZ) at this time. The peculiar element is the quasi-stationarity
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of some troughs (centred at 35 � W) favouring a persistent moist stream on their eastern side char-

acterized by anomalous high wind speeds at upper levels (250 mbar) (Kuhnel, 1990). Rarely the

through can deepen contrasting the low level north-easterly trade (Wallace and Hobbs, 1977) and

modifying the dry, isentropic and hot Saharian PBL; more often it evolves into an extratropical

western Mediterranean cyclone at the end of its life. Trajectory analysis of Knippertz et al. (2002)

and Fink and Knippertz (2003) suggests that high levels clouds (300 -400 mbar) originate from the

tropical Atlantic Ocean and are advected in south-west to north-east direction. On the contrary,

the mean levels plume (700-400 mbar) originates over Central Africa in the ITCZ zone from the

outflow of convective systems triggered by the African easterly waves, flows anticyclonically over

the West Africa and converges in the TP over Morocco.

Knippertz et al. (2002) analysed rainy episodes in the southern foothills of the Atlas Mountains

where the convection was initiated, inside the moist plumes, by large scale convergence due to the

baric configuration and by the triggering orographic effect of the mountains. Unfortunatelly that

they did not concentrate on cases of interaction of the upper level subtropical troughs (with their

TPs) either with midlatitude troughs moving into the Mediterranean from the Atlantic or even with

the polar jet (Ziv, 2001), which could be of some relevance for the present aims.

2.3 Extratropical cyclones and the Lagrangian viewpoint

Besides the very large scale forcing depicted in the previous section the basic focus of the present

work is the reconstruction of the water budget over a large portion of the Mediterranean basin.

In fact on a regional scale the transport of water vapour producing precipitation over the Alps

is strictly related to the dynamics of the cyclones affecting the westerly and central part of the

Mediterranean regions.

The heterogeneous kinematic features of airstreams forming an extratropical cyclone are the rea-

son for its complex evolution. In fact the whole low system moves with a mean horizontal velocity

of 0-15 m/s, but the cyclone shows a complicated 3D structure with respect to the low center with

various airstreams at different levels and in different sectors. Some regions are characterized by

strong vertical lifting of airmasses.

2.3.1 Analysis of extratropical cyclones in the literature

Different types of analysis have been applied to characterize extratropical cyclogenesis case stud-

ies. The first type is based upon the potential temperature (θ) and potential vorticity (PV ) perspec-
tive and wants to recognize the influence of distinct flow features (PV anomalies) on the evolution

of a cyclone system (Hoskins et al., 1985; Stein and Alpert, 1993). The second approach is based
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on the omega equation which sheds light on the vertical motion fields (Hoskins et al., 1978; Keyser,

1994; Clough et al., 1995). Finally a third type seeks to identify physically and dynamically sig-

nificant airstream patterns (Browning, 1990; Carlson, 1991). The Eulerian viewpoint is suitable to

deal with the fixed coordinates of most observing systems, to analyse the atmospheric flow systems

(fronts, cyclones and anticyclones), since they are characterized by spatially coherent structures

that evolve smoothly in time, and to predict their evolution by means of numerical models. On the

contrary, the Lagrangian framework is suitable to the asynoptic non routine airflow-tracking mea-

surements. Furthermore it allows for the characterization of homogeneous but convoluted forms

inside the flow motion. Although there is more uncertainty regarding the existence of temporally

coherent Lagrangian structures within synoptic systems, the Lagrangian framework is more phys-

ically based, as it stems from the view point of "Classic Mechanics".

Early studies of surface measurements (Dove, 1840; Fitzroy, 1863) pointed to the existence of

distinct air currents and airmasses within synoptic systems. Analysis of the path of an isolated

volume of air and calculations of surface trajectories associated with low pressure systems (Shaw,

1903; Shaw and Lempfert, 1906) served to emphasize the occurrence of distinct airmasses and re-

vealed significant bands of flow convergence and divergence. These same Lagrangian notions also

featured prominently in the development of the classical Bergen frontal model (Bjerknes, 1919).

Later isentropic Lagrangian analyses suggested the existence of dry descending and moist ascend-

ing tongues of air insight cyclones and anticyclones (Rossby, 1937; Namias, 1939). Several studies

(Rossby, 1945; Palmén, 1953; Danielsen, 1980; Young et al., 1987) have contributed to describe

the descending tongues, commonly assuming a hammer head shape to the west of the surface

cyclone and called cold conveyor belts. Other contributions (Green et al., 1966; Harrold, 1973;

Browning and Mason, 1981) provided a detailed analysis of the ascending tongues assuming a nar-

row elongated form ahead of the cold fronts and called warm conveyor belts. The cold conveyor

belt can be either rearward-sloping or forward-sloping depending on their relative movement with

respect to the cold front (Fig.2.14).

Figure 2.14: Relative motion of cold (C) and warm (W) air masses along the section of a rearward-sloping cold front
(a), of a forward-sloping cold front lying just behind a warm front (b) and of an occluded front (c).
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2.3.2 The scheme of cyclone proposed by Browning and Roberts (1994)

In the 90s much work was devoted to investigate the structure and dynamics of extratropical cy-

clones, starting from the publication of the Palmén Memorial Volume (Newton and , Eds.) which

was a combination of theoretical, observational and modelling approaches. Later a synthetic anal-

ysis scheme was proposed by Browning and Roberts (1994). Their scheme was obtained from

the diagnosis of a mid-latitude cyclone over the Eastern Atlantic Ocean, which did not undergo

"explosive cyclogenesis" (i.e. 24mb in 24h) according to the definition of Sanders and Gyakum,

1980 but nevertheless showed many of the characteristics of major cyclones (Uccellini, 1990).

Figure 2.15: Conceptual model of the development of a cyclone starting from a secondary wave perturbing the polar
front: I. Continuous and broad front - birthplace of incipient frontal cyclone; II. Frontal fracture in the
vicinity of the cyclone centre and scale contraction of the discontinuous warm and cold frontal gradients;
III. Bent-back warm front - midpoint of cyclogenesis; IV. Warm-core seclusion within northward side
of polar air stream (Shapiro and Keyser, 1990).

In Browning and Roberts (1994) the authors concentrated their attention on the third phase of

the conceptual model of the development of a cyclone (see Fig. 2.15).
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Figure 2.16: Meteosat IR image for 9 February 1987 1500 UTC when a cyclone is developing over England. The
"cloud head", the warm and the cold fronts are clearly visible.
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Figure 2.17: MODIS image of a cyclone over the central-eastern USA (20 April 2000)
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Although they do not consider the last phase of deepening cyclogenesis (4th plot of Fig. 2.15)

and although the Mediterranean cyclones may display different and peculiar features, their study

is here briefly reported: in the meantime it has become a classical reference of the "conveyor belt"

theory.

From Fig. 2.16 (from Bader et al., 1990) or Fig. 2.17 one may clearly detect the cold front, the

warm front and the "cloud head" (which is a region of clouds with a sharp convex outer edge pole-

ward of the main polar-front cloud band and intruded by a dry slot of cold air). Generally, in the

cloud heads, the cloud tops are quite low toward the edge near the dry slot. Moreover beneath the

north-western part of the cloud head, precipitation evaporates before reaching the surface, while it

is heavy in the south-easterly region of low clouds, even characterized by convection.

Browning and Robert (1994) analysed the relative flow of air streams with respect to the mean

speed of the cyclone (Fig. 2.18). To this purpose they looked at the flow within moist isentropic

Figure 2.18: Moist isentropic flow relative to the cyclone flowing at 15 UTC 13 January 1993 over England (Brown-
ing and Roberts, 1994). The selected θe-surfaces correspond to 9 � C, 10 � C, 11 � C and 12 � C. The arrows
represent the relative air motion over each θe-surface with respect to the mean velocity of the cyclone.
Dashed curves are the height at 1 km intervals of the θe-surfaces.

surface, since the equivalent potential temperature is the most closely conserved quantity along

the trajectories of air parcels. The superposition of various surface analyses reproduces the 3D

structure of the center of the cyclone (Fig. 2.18). On the right hand side there is the core (W1)
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of the warm conveyor belt flow: the warm conveyor belt (Harrold, 1973) is a strong, well defined

flow of air with high wet-bulb potential temperature (θe) that advances, as a tongue, poleward
ahead of the cold front. In the proximity of the surface low center the W1, moving in the middle

troposphere, ascends over the preexisting cold air to form the warm front: after that it tends to

move anticyclonically toward the East.

The lowest air mass near the warm front (W2), at the base of the warm conveyor belt (θe � 11 � C),

peels off toward the west to form a portion of the upper part of the cloud head (Young et al.,

1987): such warm airstream is the portion of fluid which experience the highest ascent inside the

cyclone. The rearward relative flow of W2 toward the cold front (see also Fig. 5.1) is due to the

ageostrophic circulation in the ABL induced by a frictional effect: this feature is a well-known

symptom of cyclogenesis (Evans, 1994).

The two other airstreams of Fig. 2.18 (θe � 9 � C and θe � 10 � C) are preexisting colder air, origi-

nating just ahead and beneath the warm front. These flows ascend while travelling westward, in a

system relative sense, within the cloud head and around the low center: they correspond to the up-

per part of the cold conveyor belt (Carlson, 1980). At the westernmost limit of these flows, where

they emerge from beneath the warmer air, there is a fanning out of the streamlines: the part turning

toward the north continues ascending and producing precipitation, the other part turns towards the

south and decelerates to ascend producing low level clouds. From the above description it is clear

that, close and right to the cyclone center, there is no sharp demarcation between the two conveyor

belts, both ascending and producing precipitation.

South of the low center there is an incipient intrusion of dry air above saturated warmer air cor-

responding to the W2 stream. The weak large scale ascent in this region is sufficient enough to

trigger convective precipitation: this line has to be marked as a cold front, although it is often

confused with an occluded front, developing only in the last phases of the cyclone development.

From a look at satellite images or radar images, a major break in the cold front is evident. The

frontal fracture is due to the dry intrusion which is associated with a tropopause fold penetrating

down from the stratosphere west of the surface cyclone center, which penetrates south-westerly,

especially in the middle levels of troposphere. At the surface there is no line convection, while the

edge of the intrusion produces an upper level cold front (or moisture front) hundreds of kilometer

ahead of the surface cold front and inside the core of the warm conveyor belt. At the surface

patchy rain can be observed. The resulting cold split front (in the vertical) can be explained by a

the kata-cold front transverse flow structure: note that such fronts are weekly defined in terms of

θ, while they are better-defined in terms of θe due to a remarkable decrease in humidity.
As a summary of their analysis, Browning and Roberts (1996) proposed the scheme reported in

Fig. 2.19 and 2.20, which slightly differs from the customary cyclone representation with the cold,
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warm and occluded fronts.

Figure 2.19: Analysis scheme for a cyclone with cloud head and frontal structure, before rapid deepening. See
Fig.2.20 for the symbols.

29



2. A general overview and formulation of the problem

Figure 2.20: Explanation of the analysis scheme of Fig.2.19

In the northern part of the cold front, within even several hundred kilometers of the cyclone

center in the last phases of the cyclone deepening, the dry intrusion overrides a narrowing tongue

of relative high-θe air and advances ahead of the surface cold front to give a structure consistent
with the split-cold front, as shown by the same authors in (Browning and Roberts, 1996). Farther

south, in the trailing part of the cold front, there is always an ana-cold front along which the high-
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θe air in the warm conveyor belt tends to ascend above descending low-θe air 2.14. The structure
of the rain bands in the two parts is quite different: along the ana-cold front there is a classical

2D continuos convective line; along the split front there are convective elements oriented in the

direction of the geostrophic flow and not of the cold front itself.

2.4 Trajectories of air masses

In the last 20 years trajectory computation has been successfully used in the environmental studies

of the long range transport of pollutants, dust or stratospheric ozone (James et al., 2003; Kahl et al.,

1989b; Merrill and Moody, 1996; Haagenson et al., 1990; Nodop, 1997b; Maryon and Heasmann,

1988). In these works one or few trajectories, representative of the air masses arriving over or

leaving from a specific target point, are computed every day to obtain a climatology over some

seasons or years. Consequently the statistical properties of various meteorological scenarios and

of the concentration of tracers are derived, in order to compute the probability of occurrence of

hazardous conditions for that specific target.

Sometimes a small number of trajectories is computed too to describe flow patterns or, generally,

peculiar meteorological configurations occuring in specific case studies. See for example the pa-

pers of Danielsen (1961), Rotunno and Ferretti (2001) and Gheusi and Stein (2002) or some other

works especially those published within the Mesoscale Alpine Programme (MAP) community.

The latter approach seems to be less appropriate since it aims to describe a phenomenon by a tra-

jectory whose starting or ending points have been chosen quite arbitrarily.

At the end of the 90s some researchers, especially from the Swiss School (Institute of Atmospheric

Sciences, ETH Zuerich), have developed an objective method of Lagrangian analysis which com-

putes a large number of trajectories to give a complete representation of the air masses in the

3D-space and in the entire period of the studied synoptic event. After that they identify macro air-

parcels, called CETs (Coherent Ensembles of Trajectories), displaying a marked time coherency.

The method has also been applied to identify numerically the theoretical conveyor belts inside a

developing synoptic and extratropical cyclone (Schär and Wernli, 1993; Wernli and Davies, 1997;

Rossa, 1995). In this context Swiss researchers have developed a theory for the stratospheric-

tropospheric exchange and above the role of PV-banners and PV-anomalies as precursors of cy-

clogenesis. Less attention has been paid to the warm-conveyor belt, with the exception of two

papers by Wernli and Davies (1997) and Wernli (1997) where synoptic cyclones developing over

the Atlantic Ocean are simulated. Apart from a few attempts (Massacand et al., 1998) the exten-

sion of results to the mesoscale, as well as a detailed trajectory study of cyclones developing in the

Mediterranean area has been left still untried. Moreover it seems interesting to resume a quantita-
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tive approach which attempts at defining water budget associated with Lagrangian flow structures

(Turato, 2003; Bertò et al., 2004; Stohl et al., 2004).

2.4.1 Water budget

The Lagrangian computation of trajectories is commonly used as an instrument yielding a qualita-

tive illustration of the airstreams. Only few authors have already developed analytical techniques

which allow to reconstruct evaporation maps that provide the distribution and the quantification

of the sources of only the water vapour contributing to the precipitation over a specific target area

(Stohl and James, 2004).

In the present thesis a water vapour budget analysis has been developed in detail. Through the

application of the method to a large ensemble of precipitation events over the Alps during a long

period, the climatology of the atmospheric portion of the hydrological cycle over the Mediter-

ranean region has been obtained.

2.4.2 Atmospheric transport and water isotopic concentration

The following chapter shows that the reconstruction of air mass trajectories can be affected by large

errors. An estimation of such errors requires the knowledge of the true reference trajectories. This

is possible by tagging an air parcel by a mathematical tracer that is conserved along the trajectory.

Mathematical tracers

The Liouville theorem is valid for Hamiltonian systems of material points. "In the phase space, de-

fined by the spatial coordinates and by the components of the impulses f � x � y � z � ix � iy � iz � , a generic

scalar quantity of the system of points is an invariant along the trajectory followed by the system."

The above stated Liouville theorem is true if the system of points takes up an infinitesimal volume,

i.e. a volume so small that it can be deformed but not disaggregated in the considered time period.

In particular it is possible to write that the density D in the phase space

D �
dN

dV
(2.3)

is constant in time, that is
dD

dt
� 0 � (2.4)
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where N is the number of parcels and V is the volume of the system of points in the phase space.

The density ρ in the physical space can be written as

ρ � � � � � ∞

� ∞
D dudvdw � (2.5)

while the velocity distribution h as

h � � � � � ∞

� ∞
D dxdydz 
 (2.6)

Therefore, if the variation of one of the two quantities is known, then it is possible to derive

information about the evolution of the second one resorting to the conservation principle stated by

the Liouville theorem.

In the case of continuous systems, e.g. the atmospheric fluids, it is possible to derive a similar

Hamiltonian formulation of the theorem by writing:

dG

dt
� 0 (2.7)

where G is a generic integral quantity in the physical space:

G � � � � g dxdydz 
 (2.8)

It is clear that for the continuous systems the Liouville theorem results to be less usable just

because G must be an integral quantity. Furthermore, the system, to be Hamiltonian, must display

conservative properties which are not easily found in the real atmosphere. So the only remaining

possibility is to resort to physical tracers to check the reliability of the computed trajectories.

Physical tracers

Ideal physical tracers are ballons or light, rather than reactive substances (ozone, inert gases, fine

dust).

While the study of large scale pollutant transport is commonly based on conservative tracers,

this is not the case when analysing the transport of water vapour. The condensation/evaporation

processes along air mass trajectories strongly affect the conservation of the water vapour. The only

possible conservative tracer, therefore, could be the isotopic composition of water vapour if its

values at the source areas were known. Although this is not the main purpose of the AQUAPAST

project it is clear that the isotope signal can be also used:

� to test the trajectory methodology pointing out the type error which mostly hit the trajectory
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computation

� to distinguish between the numerical errors and the real upper tropospheric mixing due to

the Lagrangian chaos (von Hardenberg et al., 2000). It is useful to remember, however, that

a flow tube on a isentropic chart equates to a Lagrangian flow pattern only if the system is

conservative, steady and in uniform translation.
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In the present chapter a review of the existing literature is proposed regarding the technique of

trajectory computation. In particular the various types of possible errors and their order of magni-

tude are discussed. An hint at the numerous applications of the trajectory techniques to the long

range pollution transport follows. Finally, an introduction concerning the rare applications of the

methodology to the water vapour transport in the literature and in the present work is reported.

3.1 Computation of trajectories

The trajectory of a specific infinitesimally small air parcel is defined by the differential equation

dX
dt

� Ẋ �X � t � � (3.1)

with t being time, X the vector identifying the parcel position at time t and Ẋ the air parcel velocity
vector. Recalling that at each time t the velocity of the air parcel Ẋ (Lagrangian velocity) is equal
to the value assumed by the wind field u (Eulerian velocity) in the point where the air parcel is
flowing at that specific time t, then the equation 3.1 can be written as

dX
dt

� u �X � t � � � (3.2)

Once the initial position of the parcel X0 at time t0 and the wind field u are known, the trajectory
of air parcel is completely determined through equation 3.2. We can write

X � t � � X � X0 	 t � � (3.3)

Based on equation 3.2 we can compute either forward trajectories (t � t0) or backward trajectories

(t � t0). The spatial coordinates X0 at time t0 provide a means for identifying each air parcel
at each time. These initial coordinates are called material or Lagrangian coordinates (Dutton,

1986). An important feature of trajectories is that particles that are initially neighbors remain
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neighbors at least for finite time lags (which is not true for infinite time lags). So a line of particles

at time t0 remains an unbroken line at time t, no matter how it is distorted by the motion. This can

be expressed by

lim
∆X0 � 0 �X � X0 � ∆X0 � t � � X � X0 � t � � � 0 � (3.4)

The most important property of equation 3.4 is that particles that are inside a closed surface at time

t0 remain separated from those outside. Any closed surface which moves with the flow is called

a material sur f ace. An interesting application of this feature is contour advection (Waugh and

Plumb, 1994).

It has to be noted that trajectories are different from streamlines. A streamline identifies the

direction of flow at a fixed instant of time and thus is everywhere tangent to the velocity vectors:

dx

u
� dy
v

� dz
w

� (3.5)

Only during stationary conditions the trajectories and the streamlines coincide.

The idealized concept discussed above is not fully applicable to finite dimension parcels in the real

atmosphere. A real parcel of finite size may become distorted so strongly in a divergent flow that

it is turn apart; in particular it is deformed, at least in ABL, by turbulent and convective motions.

Hence, a computed trajectory is representative for the path of an air parcel only for very limited

time lags.

3.1.1 Solution of the trajectory equation

In general Eq. 3.2 can be integrated only by means of numerical methods. For meteorological ap-

plications a finite-difference numerical approximation can be used (Walmsley and Mailhot, 1983).

Expanding X � t � in a Taylor series about t � t0 and evaluating it at another instantt1 � t0 � ∆t (see
Fig. 3.1.1), one obtains

X � t1 � � X � t0 � � � ∆t � dX
dt ����

t0

� 1
2

� ∆t � 2 d2X
dt2 ����

t0

� � � � � (3.6)

The first order approximation to equation 3.6 is

X � t1 � � X � t0 � � � ∆t � Ẋ � t0 � � (3.7)

This is a � zero acceleration � solution of equation 3.1 that is computationally cheap since it involves
no iteration. It is accurate to the first order, which means that differences between the real (the
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Figure 3.1: Position and velocity vectors of an air parcel along its trajectory at time t0 and t1

"re f erence tra jectory") and the numerical solution will occur from the omission of the second-

and higher-order terms. If trajectories are calculated using very short integration time steps, equa-

tion 3.7 might be accurate enough for pratical purposes. However, more accurate approximations

at acceptable computational costs do exist. If X � t � is also expanded in a Taylor series about t � t1
and evaluated a t � t0, the following yields:

X � t0 � � X � t1 � � � ∆t � dX
dt ���� t1

� 1
2

� ∆t � 2 d2X
dt2 ���� t1 � � � � 
 (3.8)

Combining equations 3.6 and 3.8, we obtain

X � t1 � � X � t0 � � 1
2

� ∆t � � Ẋ � t0 � � Ẋ � t1 � � � 1
4

� ∆t � 2 � dẊ
dt ���� t0 � dẊdt ���� t1 � � � � � 
 (3.9)
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If only the first two terms on the right-hand side of equation 3.9 are retained, we obtain the

"constant acceleration" solution

X � t1 � � X � t0 � �
1
2

� ∆t � � Ẋ � t0 � � Ẋ � t1 � 
 � (3.10)

(Walmsley and Mailhot, 1983). This approximation is identical to the well known Petterssen

(1940) scheme, originally a graphical method used to manually trace isobaric trajectories from

weather charts. Equation 3.9 is accurate to the second order. It has to be solved by iteration

starting with equation , since Ẋ � t1 � is not known a priori:

X1 � t1 � � X � t0 � � � ∆t � Ẋ � t0 �

X2 � t1 � � X � t0 � �
1
2

� ∆t � � Ẋ � t0 � � Ẋ1 � t1 � 


...

Xi � t1 � � X � t0 � �
1
2

� ∆t � � Ẋ � t0 � � Ẋi � 1 � t1 � 
 (3.11)

The superscripts indicate the number of iteration, and Ẋi � t1 � is taken at the position Ẋi � t1 � . Some-

times, the third term on the right-hand side of equation 3.9 is retained ("variable acceleration"

method). In principle, this solution gives higher accuracy at the cost of increasing computing time

with the disadvantage that the accelerations at two times have to be evaluated. This can introduce

inaccuracy because wind fields are often available only at large temporal intervals. Hence, the vari-

able acceleration method may result even less accurate than the constant acceleration method. All

solutions discussed so far are kinematic, as they use the wind information only. Danielsen (1961)

developed a technique to trace trajectories by tagging air parcels with � quasi � � conservative quan-

tities such as potential temperature. Although two-dimensional kinematic trajectories can also be

constructed on isentropic surfaces, Danielsen (1961) method is dynamic because it uses velocity

and mass field information and dynamic equations linking the two (Merrill et al., 1986). However,

Stohl and Seibert (1998) showed that dynamic trajectories calculated through an explicit method

can perform unrealistic ageostrophic oscillations. Since accurate wind fields with high space and

time resolution are available, kinematic trajectories are more accurate (Stohl and Seibert, 1998).

3.1.2 Sensitivity to the initial conditions and errors

The inaccuracy inherent to the numerical integration of trajectories can be evaluated by introducing

a suitable concept of error. The measure of trajectory errors mostly adopted in the literature is the
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absolute horizontal transport deviation (Kuo et al., 1985; Rolph and Draxler, 1990)

AHTD � t � � � � X � t � � x � t � 
 2 � �Y � t � � y � t � 
 2 
 1 � 2
(3.12)

where (X � Y ) is the location of the test trajectory and (x � y) is the location of the reference trajectory
at the travel time t. A similar measure can be defined in the vertical dimension.

Another parameter often used is the relative horizontal transport deviation (RHTD), which is de-

fined as the AHTD divided by the lenght of the reference trajectory. Various types of possible

errors and their order of magnitude are discussed in the following subsections.

Truncation errors

The so-called truncation errors occur when the equation 3.1 is approximated by a finite-difference

scheme neglecting higher order terms in the Taylor series expansion. Walmsley and Mailhot

(1983) show that the truncation error is proportional to ∆t for the zero order scheme (Eq. 3.7),
proportional to � ∆t � 2for the constant (Eq. 3.10) and variable acceleration method. It can be kept
below any given limit by using sufficiently small ∆t.
Considering that in most situations the time step requirements will be less demanding, while on

the other hand a few situations may even be more demanding, Seibert (1993) recommended to use

a scheme that automatically adjusts the time step to the actual flow situation. Hence, since no grid

cell must be skipped during a time step to reproduce the smallest features in the trajectories, the

Courant-Friedrichs-Lewy criterion

∆t � ∆xi

� vi �
� (3.13)

where ∆xi are the grid distances and vi are the wind components, may serve as an upper limit for
the flexible time step (Seibert, 1993).

Interpolation errors

Wind data are, in general, available only at discrete locations in space and time, either as irregularly

spaced observations or as the gridded output of meteorological models. In both cases, the wind

speed must be estimated at the trajectory position by the trajectory model. This interpolation

causes errors that substantially affect the trajectory accuracy.

To examine the errors caused by the spatial interpolation of the wind fields obtained by prognostic

meteorological models (either forecasts or initialized analyses), the usually adopted method is to

degrade artificially the grid resolution, interpolate the wind data to the original grid and compare

them with the undegraded data. Similar tests can be adopted to estimate errors deriving from the
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Temporal resolution
Spatial resolution (km)

2h 4h 6h 12h

90 0 250 411 734
180 166 281 418 733
360 417 444 517 730

Table 3.1: Mean horizontal trajectory position deviation (km) from the higher resolution reference trajectories after
96 h travel time for various spatial and temporal resolutions of the input data (Rolph and Draxler, 1990)

interpolation in time.

Stohl et al. (1995) evaluated the performance of several different interpolation methods. They

found that linear interpolation in time is very accurate, but interpolation methods of higher order

in space reduce errors as compared to linear interpolation. Stohl et al. (1995) also found that

interpolation of the vertical wind component w produces larger errors than the interpolation of the

horizontal components because of its high-frequency variability. The effect of degrading the wind

field resolution on trajectory accuracy has been examined in several other studies (Kuo et al., 1985;

Doty and Perkey, 1993; Rolph and Draxler, 1990). One finding of these studies is that the growth

of trajectory position errors with travel time caused by interpolation is approximately linear, but

the most important result is that "the spatial and temporal resolution of the wind fields must be in

balance in order to limit the trajectory errors" (Rolph and Draxler, 1990). An increase in spatial

resolution alone results in just marginally more accurate trajectories when the temporal resolution

is low. On the contrary, increasing the temporal resolution alone is also not so effective when the

spatial resolution is low. In any case, a minimum resolution of 6 h is required if diurnal variations

in the flow field are to be resolved. The recent availability of analysis fields with 3 h temporal

resolution has improved substantially the trajectory computation.

As an example, the results of Rolph and Draxler (1990) are summarized in Table 1. At high

spatial resolution, trajectories are more sensitive to a reduction of the temporal resolution than

to a reduction of the horizontal resolution. However, at 360 km resolution, except for the 12 h

case, the coarse spatial resolution becomes the dominant cause of trajectory errors. The effect of

interpolation errors on trajectory accuracy may also depend on the complexity of the flow situation.

For example Stohl et al. (1995) found larger sensitivity to interpolation errors for trajectories

crossing the Alps than for others.
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Errors resulting from the evaluation of the wind vertical component

Trajectory errors are also related to different assumptions about the wind vertical component w.

In contrast to the horizontal wind component no routine observations of w are available, since the

wind vertical component has an order of magnitude of only some cm � s which is comparable with

the measurement errors. So fields of w are solely producted by NWP models, and hence they are

usually less accurate than the fields of the horizontal wind. Note that a small error in the estimation

of the vertical displacement of an air parcel can induce big errors in its horizontal trajectory be-

cause of the strong vertical gradient of the horizontal wind field. Fuelberg et al. (1996) pointed out

that it is more accurate to obtain vertical velocities directly from a dynamically consistent numer-

ical model. Vertical motions diagnosed from the horizontal wind components using the principle

of mass conservation (i.e continuity equation) are much less accurate. Trajectories computed with

these vertical velocity components sometimes determine unrealistically large diabatic heating or

cooling rates of the air parcel, whereas dynamically consistent vertical motions keep the diabatic

heating and cooling rates within the limits expected on theoretical basis. The simplest alternative

to three-dimensional trajectories is neglecting w. This results in two-dimensional trajectories in

various coordinate systems:

1. isobaric trajectories,

2. isosigma trajectories, i.e. terrain following trajectories,

3. isentropic trajectories.

The third family of trajectories is the most realistic, since the atmospheric motion at synoptic

scale to mesoscale is generally adiabatic and inviscid. In fact, they were computed for a long time

before the arrival of variational analyses. However, large problems can be met in the ABL and

in saturated moist air where diabatic effects are not negligible. Morover, in the ABL, calculated

3D-trajectories are often far from being representative of the path of single air parcels as the

latter quickly loose their identity due to turbulent mixing. Accordingly, stochastic Lagrangian

particle dispersion models have been applied to simulate the transport in the ABL, but they are

relatively demanding on computer resources and not easily applicable. Alternatively trajectories

are often used that are advected with the vertically averaged wind in the ABL (Heffter, 1980; Rao

et al., 1983). This approach, which was found to agree best with the dispersion of tracer material

(Haagenson et al., 1987), has been adopted in the present work. Of course this method gives only

a crude approximation of the real complexities occurring in real turbulent flows.
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Wind field errors

In many cases the largest source of error for trajectory reconstruction derives from the underlying

wind fields obtained either from forecasts or from analyses.

The analysis fields. Most of the trajectory models use the analysis fields available from two
meteorological centers, the European Centre for Medium-Range Weather Forecast (ECMWF) and

the U.S. National Centers for Environmental Prediction (NCEP). The analyses are obtained from

the data assimilation process, which combines the meteorological observations with a short range

forecast, yielding meteorological fields that are as close as possible to the observations and at

the same time fulfill the dynamic model constraints. The most advanced assimilation technique

at ECMWF (White, 2002) is a four-dimensional algorithm (4DVar) working on a time period

∆t called "assimilation window" (currently 12 h) extending from the time of analysis t0 to the
time ta � t0 � ∆t. The analysis (valid at time t0) is adjusted iteratively to minimize a so-called
"cost function" (Fig. 3.2). The latter is given by the sum of both the deviation at time t0 of the

new analysis from the "background" forecast (initialized on the previous analysis valid at time

t
� a

� t0 � ∆t) and of the deviation of the short forecast (initialized on the new analysis) from the
observations:

J � x � � Jb � x � � Jo � x � � � x � xb � TB � 1 � x � xb � � � y � H � x � � TR � 1 � y � H � x � � (3.14)

where x is the vector of analysis variables (surface pressure, temperature, wind, specific humid-

ity and ozone), xb is the vector of background forecast, y is the vector of observations , B is the

background error covariance matrix, Ri is the observation covariance matrix and H is the obser-

vation operator which interpolates the background on the observation point and on the time of

observation (see White (2002) for details).
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Figure 3.2: 4DVar assimilation technique used at ECMWF (White, 2002). Jb is the deviation at time t0 of the new
analysis xa from the "background" forecast xb (initialized on the previous analysis); Jo is the deviation of
the short forecast (initialized on the new analysis) from the observations.

The impact of analysis and forecast errors on trajectory computation. Most of the trajectory
models avoid using the fully consistent fields from forecast models in favour of the analysis data

because the forecast errors increase exponentially with time. Nevertheless, as shown in Stohl et al.

(2004), the nondiffusive character of the Lagrangian methods can be partially spoiled by the use

of a series of dynamically inconsistent wind fields produced by the assimilation procedure. In

fact the short range forecast initialized on the analysis field valid at time t0 is as close as possible

to the observations and at the same time fulfill the dynamic model constraints only during the

assimilation window of that analysis (from t0 to t0 � ∆t). The short range forecast initialized at
time t0 is instead not dynamically consistent with the short range forecasts initialized respectivelly

on time t0 �
∆t and on time t0 � ∆t.
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Figure 3.3: The Lagrangian diffusion coefficient is defined as K � t � � 0 � 5 dr
2 � t �
dt where r

2 � t � is the mean square sepa-
ration of particles at time t (Stohl et al., 2004).

As a consequence the Lyapunov exponents and the diffusion coefficient (measure of the dis-

persion tendency of a set of trajectories) can result statistically relevant even starting from analyses

data (Fig. 3.3). In summary the Lagrangian mixing obtained from the forecast data can be wrong

but the mixing from the analyses is generally overestimated although closer to the real Lagrangian

dispersion. Such a result has been obtained by Stohl et al. (2004) from a 1-year climatology (2002)

of a set of 10 million trajectories representative of the troposphere and tropopause of the whole

Northern Emisphere. Moreover, a similar overestimation of the variations of some conservative

properties (PV , θe and q) along the trajectories has been detected. This is particularly important in
atmospheric chemistry, since many chemical reactions show a non-linear dependence on the con-

centration of the reactants, including water vapour. Luckily, the effect is more evident at higher

levels (tropopause) than at lower ones, where it is dumped by the extra noise from turbulent mix-

ing. The tendency of the water vapour content in the middle and low troposphere is thus the most

important issue in the present work.

Starting position errors and ensemble methods

The starting positions of trajectories are commonly not exactly known. For example, the differ-

ences between the model topography and the real topography makes the selection of a starting

height difficult. This introduces some inaccuracy in the reconstruction of back-trajectories (es-
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pecially in the case of convergent flow). Note that trajectory divergence is due not only to the

occurrence of initial position errors, but also to the wind shear and to the divergence of the flow.

Fortunately in the present work an ensemble of trajectories starting form a grid box has been

computed (see section 3.3.2), thus reducing the impact of such error source.

3.1.3 Combination of errors

The overall accuracy of a trajectory is determined by the integral effect of all the errors discussed

in the previous section. Its assessment is difficult because it requires the determination of a true

reference trajectory. This is possible by tagging an air parcel with a tracer that is conserved along

the trajectory. Many different tracers have been used, but none of them is ideally suited, ei-

ther because it is not well conserved, or because its determination is difficult, or because it is

not commonly available. Many studies performed in the 80s and 90s were based on three dif-

ferent classes of tracers, balloons (constant level or manned baloons), material (smoke plumes,

inert gases and so on) and dynamical tracers (PV). These culminated in some continental ex-

periments (Cross
�

Appalachian Tracer Experiment -CAPTEX-; Across North America Tracer

Experiment -ANATEX- and European Tracer Experiment -ETEX-). A brief summary of litera-

ture estimates is reported in Stohl (1998) (see figure 3.4).
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Figure 3.4: The table (from Stohl (1998)) summarizes various trajectory error estimations derived from Baumann
and Stohl (1997), Doty and Perkey (1993), Clarke et al. (1983), Draxler (1996), Haagenson et al. (1987),
Haagenson et al. (1990), Kahl et al. (1989a), Kahl et al. (1989b), Kahl and Samson (1986), Kahl and
Samson (1988), Knudsen and Carver (1994), Knudsen et al. (1996), Nodop (1997a), Nodop (1997b),
Maryon and Heasmann (1988), McQueen and Draxler (1994), Pickering et al. (1994), Reiff et al. (1986),
Rolph and Draxler (1990), Stohl (1996), Stohl and Wotawa (1995), Stohl et al. (1995), Stunder (1996),
Walmsley and Mailhot (1983), Draxler (1991), Draxler (1987), and Stohl and Seibert (1998),.
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It turns out to be easier the estimation of the relative contribution of a specific source of error.

For example the truncation errors (section 3.1.2) can be computed reconstructing the re f erence

tra jectory by integrating Eq. 3.2 using a very short time step: obviously this re f erence tra jectory

does not correspond to the real physical track, which could even be very different since the

re f erence tra jectory shows the effects of the other errors. Another typical approach is the in-

tercomparison of various Lagrangian models which again can only help to point out the possible

gaps of a particular model (Stohl et al., 2001). The advantages of this strategy is the possibility to

build a sort of error climatology, which is impossible in the case of tracer experiments.

3.1.4 Other models

Trajectory models are the main instrument to estimate the long range transport of tracers in the

atmosphere. Nevertheless the description of transport phenomena in turbulent f lows by single

trajectories is not exhaustive (Seibert, 1997).

Both Eulerian models and Lagrangian Particle Dispersion Models (LPDM) are currently used

to study the turbulent transport on a fine scale. LPDM have no artificial numerical diffusion

like Eulerian models (Nguyen et al., 1997) and hence have a greater potential to resolve fine-

scale structures of the flow. LPDM numerically simulate the transport and diffusion of a passive

scalar tracer by calculating the Lagrangian trajectories of tens or hundreds of thousands of tagged

particles. These trajectories are calculated according to the relation:

X � t � ∆t � � X � t � � � ∆t � � v̄ � t � � v 
 � t � � (3.15)

where v̄ is the resolvable scale wind vector obtained directly from a meteorological model, and
v 
 is the turbulent wind vector that describes the turbulent diffusion of the tracer in the ABL.

The concentration of the tracer at a specific location at a given time is linearly proportional to

the number of particles per unit volume. It can be evaluated simply by counting all particles

that reside within a certain volume or, more favorably, by using a kernel method (Lorimer, 1986;

Uliasz, 1994; Thomson, 1987; Wilson and Sawford, 1996; Rodean, 1996).

The core problem of LPDM is the determination of the turbulent velocities v 
 . These are estimated

from the Langevin equation (Thomson, 1987):

dv 
i � ai � X 
 v 
 
 t � dt � bi j � X 
 v 
 
 t � dW j � t � (3.16)

where a and b are functions of X, v 
 and t and the dW j are the increments of a vector-valued
Wiener process with independent components. The dW j represent Gaussian white noise with
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mean zero and variance dt; increments dWi and dW j occurring at different times, or at the same
time with i �� j, are independent. LPDM can simulate, in addition to the dispersion, all linear
processes, such as dry and wet deposition, radioactive decay, and linear chemical transformations,

but a major drawback is that, currently, nonlinear chemical reactions cannot be accounted for.

Otherwise Lagrangian box models can be employed. Firstly, a back trajectory is calculated from

this location. Then, a box is moved forward along this trajectory and the changes in the con-

centrations in the box caused by chemical reactions and deposition are calculated. Compared to

zero-dimensional Eulerian models, Lagrangian box models are more practical because no advec-

tion from outside the box occurs and hence no boundary conditions are required. However, such

models are fully applicable only at higher levels of the atmosphere (Sparling, 1995) where turbu-

lence is weak. For the calculation of the turbulent vertical exchange in the ABL it is necessary

that the boxes representing an air column remain exactly above each other. In reality, however, a

vertical shear of the horizontal wind would separate the boxes. To avoid this grid tangling, the

wind shear must be neglected and the whole column of boxes must be advected along a single

trajectory. It is for this reason Lagrangian column models are less accurate than three-dimensional

Eulerian models in the ABL (Peters, 1995).

3.2 Source areas of air pollution

In 1995 Ashbaugh et al. (1985) developed a method based on Lagrangian trajectories to iden-

tify source areas of air pollutants ("source oriented model"). They calculated a large set of back

trajectories, each consisting in a number of segments separated by specific time increments and

characterized by their positions and time, respectively. Then they covered the area of study with a

regular analysis grid.

If N is the total number of trajectory segments, ni j is the number of segments falling in the (i � j)
grid cell and P � Ai j � � ni j

N
is the probability that a randomly selected air parcel resides in the (i � j)

grid cell. If mi j is the number of segments in the (i � j) grid cell, but only for those trajectories
which arrive at the receptor when a certain criterion value for the pollutant concentration is ex-

ceeded, then P �Bi j � � mi j
N
represents the residence time of high pollutant concentration air parcels

in the (i � j) grid cell. The conditional probability of the event Bi j, given that event Ai j occurs,
is P � Bi j �Ai j � � mi j

ni j
. Regions with high conditional probability have a large potential to adversely

affect the air quality at the receptor site when they are crossed by a trajectory. They do not neces-

sarily make a large contribution to long-term air pollutant concentrations, since this also depends

on the frequency at which air parcels actually travel over that region.

Later on Seibert et al. (1994a) and Seibert et al. (1994b) modified the method to obtain the pol-
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lutant concentration fields. They calculate a logarithmic mean concentration for each grid cell

according to

Ci j �
1

∑Nl � 1 τi jl

N

∑
l � 1
log � cl � τi jl (3.17)

where i, j are the indices identifying the horizontal grid, l the index of the trajectory, N the total

number of trajectories, cl the concentration observed on arrival of trajectory l and τi jl the time
spent in grid cell (i, j) by trajectory l. The previous formula assumes that the pollutant concen-

tration is conserved along the trajectory: so a high value of Ci j means that, on average, air parcels

passing over cell (i, j) result in high concentrations at the receptor site. Note that this statisti-

cal approach acts in such a way to determine gridded concentration field maps representing, at

each grid cell, the vertical average column concentration of the pollutant from the surface to the

free troposphere, which make it possible to localize the spatial distribution of sources and sinks.

Seibert et al. (1994b) showed that the computed fields exhibit small-scale variations which are not

necessarily statistically significant. So a 9-point filter must be applied to smooth the concentration

field, imposing the restriction that the values must be kept within their confidence interval. The

smoothing is iteratively repeated until the change in the concentration field is less than a prescribed

value. This procedure assures that significant variations are preserved while most of the insignif-

icant ones are removed. Stohl et al. (1995) further refined the method performing an iterative

redistribution of the concentrations along the trajectories.

The described method has been widely used. For example Ferrarese et al. (2002) applied the previ-

ous source oriented model to calculate the concentration fields of atmospheric CO2 starting from

the pluri-annual measurements of CO2 at the observing stations of Plateau Rosà (3480m a.s.l.,

in the western Alps) and Zugspitze (2937 m, in the eastern Alps). Subsequently they compared

the computed fields with the sea-surface temperature (SST) patterns, forestation maps, forest fires

and the anthropogenic emissions in order to identify with high spatial resolution the most relevant

areas of CO2 sources and sinks (Apadula et al., 2003).

The procedures of Ashbaugh et al. (1985) and of Seibert et al. (1994b) underestimate the spatial

gradients of the "true" source fields because a measured concentration is attributed equally to all

segments of its related trajectory. Moreover it has been shown that these methods have problems

with species produced by non-linear chemistry. A possible solution is the new approach of Seibert

(1997) establishing trajectory-derived source-receptor relationships. It is not based on statistics,

but on inverse modeling, viewing trajectories as the output of a primitive Lagrangian dispersion

model. This is an ill-posed inverse problem, since the dimensions of the receptor-concentration-

vector and of the source-vector are not equal. Seibert (1997) overcomes this difficulty by intro-

ducing additional constraints, but the effect of these constraints has to be further explored.
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3.3 Application of the Lagrangian Analyses to long range water
vapour transport

Precipitation falling on a given area is a mixture of water transported from many different sources:

some water originated locally (from local evaporation or transpiration), some other has been ad-

vected from remote sources of moisture (both terrestrial and oceanic). Transport of water vapour

can be reproduced by means of numerical modelling concepts similar to those outlined in previous

sections. However some processes specific of this species have to be carefully taken into account,

namely:

� the mass conservation principle has to be applied to all the various phases of water: water

vapour, atmospheric liquid droplet and ice particles (Seibert et al., 1994b),

� phase transformations imply energy fluxes between the air parcels and water drops (or ice

crystals).

3.3.1 The approach of Dirmeyer and Brubacker (1999)

In the work of Turato (2003) the approach of quasi-isentropic back-trajectory algorithm of Dirmeyer

and Brubacker (1999) is applied and extended to other case studies. The surface sources of water

evaporating and later producing rainfall during the event were determined through the calculation

of back trajectories of water vapour in a quasi-isentropic way: in fact the trajectories can not be

considered isentropic as the height of parcels at each time step is calculated on isentropic surfaces,

but the wind which is used to move the parcels from a gridbox to another is defined on isobaric sur-

faces. Note that the method assumes that there is sufficient stratification and absence of significant

diabatic processes to permit tagging single air parcels by means of their potential temperature.

Three dimensional fields (horizontal wind, temperature and specific humidity), provided as part

of the NCEP reanalysis archive (Kistler et al., 2001), are instead originally available on a 1.875 �

� 1.875 � global grid and 28 vertical levels, with only 8 levels under the 300 hPa height: the ver-

tical structure of humidity and wind fields in the planetary boundary layer is therefore coarsely

resolved.

Back-trajectory calculations are performed from each specified grid square i where precipitation

has occurred, at a rate proportional to the precipitation rate on the same grid box: each parcel

represents a unit of precipitation onto the grid box i. The assumption is that a precipitation par-

cel can fall from any level: for this reason, the computation of the air parcel back trajectory is

started from a random level in the vertical. The vertical probability distribution of the random

function depends on the precipitable water content in the atmospheric column below each vertical
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level. Column-integrated precipitable water PW between the surface and a specific vertical level

is calculated according to the equation:

PW � ps
g

� 1
σ
qdσ (3.18)

where the variables q and ps represent respectively the specific humidity and the surface pressure,

g is the acceleration of gravity and σ is the vertical sigma-coordinate given by σ � p
p0
(p0 is equal

to 1000 hPa and p is the pressure at the σ-level). To randomly sample the starting height from

Figure 3.5: Scheme of water vapour transport adopted in the approach of Dirmeyer and Brubacker (1999)

σ = 0 to 1, a cumulative distribution function is assigned, so that the probability Pc of the back
trajectory whose integration starts from σ � c is

Pc � 1 �
PWc

PWi
(3.19)

where PWi is the total precipitable water in the column over grid box i and PWc is PWc � ps
g � 1c qdσ.

Each water vapour parcel in the precipitation column is assumed to have an equal probability of

being rained out; it follows that the larger portion of precipitation comes from the lower levels,
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where the concentration of water vapour is higher.

In the model of Dirmeyer and Brubacker (1999), as a parcel k is tracked back in time from the grid

box i, the evaporative sources contributing to increase its water vapour content over the grid box

underlying the parcel at the time t are evaluated, whereas the horizontal moisture convergence in

the same gridbox is not taken into account (Fig. 3.3.1). The rate of evaporation is computed at

each time step of the trajectory integration as

Ri � k � x � y � t � �
E � x � y � t �

PWi
(3.20)

where E � x � y � t � is the evaporation from the grid box � x � y � underlying the parcel k at the time t,

Ri � k � x � y � t � is the contribution of the grid box � x � y � to the total column precipitable water PWi, at

the time of the rain event over the grid box i. Equation 3.20 implies that the evaporated moisture

is well mixed in the lower troposphere: the assumption is well verified for the low atmosphere

layers at the time when most evaporation occurs, i.e. during daytime. So after m parcels have

been launched from the target area A, formed by n grid squares, the water mass contribution of

evaporation from grid square � x � y � to precipitation onto area A is given by

EA � x � y � �
n

∑
i � 1

m

∑
k � 1

t f

∑
τ � 0
Ri � k � x � y � tp � τ � (3.21)

where tp is the time when precipitation occurs, τ is given by τ � � n∆t (with ∆t the integration time
step), � t f (where t f � � n f∆t) is the duration of the longest back-trajectory. By this formulation
of the evaporation contribution to the final precipitation the possible phase changes along the path,

which could modify the moisture and energy content of the parcel (condensation, re-evaporation

of cloud liquid water) are not taken into account. The assumption is that along the path there are

no sources or sinks of water vapour other than surface evaporation and rainfall events in the area

A. In fact, in the method proposed by Dirmeyer and Brubacker (1999), all the parcels which are

over the grid box � x � y � at the same time, lost over it the same amount of water as a contribution

to local evaporation, without taking into account their height and the real thermodynamic profile

over the grid box, which gives information on the actual vertical distribution of specific humidity.

In conclusion the method adopted by Turato (2003) presents a lot of weak points:

1. Quasi-isentropic backtrajectories are affected by large errors.

2. Analysis fields display a coarse spatial and temporal resolution.

3. The assumption that a precipitation parcel can fall from any level does not take into account

the state of saturation of various vertical levels.
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4. The condition of well mixed distribution of water vapour within the troposphere is not al-

ways verified.

5. Sources or sinks of water vapour along the path are not taken into account.

6. The method has to get as an input the evaporation field too, besides the 3D field of water

vapour concentration

3.3.2 The method proposed here

In the paper of Turato (2003) the method from Dirmeyer and Brubacker (1999) is used to analyse

single events: probably it would be more suitable to climatological studies where computational

errors could compensate each other. In the present work a more restrictive approach is followed

both in the computation of trajectories and in the analysis of water vapour budget (chapter 4).

The model

Five-day back-trajectories are computed using the Lagrangian model FLEXTRA (Stohl andWotawa,

1995), which integrates fully 3D-trajectories interpolating wind records to current particle position

and implementing the Petterssen (1940) scheme (section 3.1.1). The Petterssen (1940) scheme is

accurate to the second order. The integration time step is not fixed: it corresponds to the time lag

which simultaneously satisfies the Courant-Friedrichs-Lewy criterion ∆t � ∆xi�
vi

� (Seibert, 1993) for
the 3D components and for all the trajectories. FLEXTRA interpolation of the wind field is linear

in time, bicubic in the horizontal and polinomial in the vertical 3.1.2.

Representative ending points for the trajectories to be calculated have been selected as the grid-

points of a 3D-grid with a 0.5 � � 0 � 5 � horizontal resolution and 200m vertical resolution (from
1500m to 5900m above sea level). This implies a total number of Nz = 23 horizontal levels; on

each of them Nx � Ny = 5 � 4 grid points are set, resulting in an overall number of NT = 460
endpoints over Trentino (see Fig. 3.3.2 and Bertò et al. (2004)). It is implicitly assumed that 460

ending points properly represent sufficiently properly the thermodynamic state of the air masses

producing precipitation over the target area. Note that a minimum height of 1500m s.l.m. has been

chosen to end trajectories over ECMWF orography. A maximum height of 5900m s.l.m has been

set assuming the contribution of upper troposphere to the precipitation be negligibile.

Then 460 back-trajectories arriving over Trentino have been computed every 3 hours. Each parcel

is tracked until it leaves the model domain. Anyway the parcels are never backtracked for more

than 5 days.
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Figure 3.6: 3D-grid of the trajectory ending points over Trentino having 0 � 5 � � 0 � 5 � horizontal resolution and 200m
vertical resolution

3.3.3 Choice of events and case studies

In the present thesis a method of analysis of strong precipitation over Trentino has been developed

to study and decipher in detail the water budget of single case studies. As a consequence the

attention was first driven on the most important recent extreme events of November 2000 and

November 2002. Moreover this allowed to use 4d-Var analyses as input fields for the model. These

type of analyses, produced operationally by ECMWF since November 1997, are very accurate:

the model forecast is adjusted iteratively to minimize the deviation of the analysis from both the

forecast and the observations in the whole assimilation time window (see section 3.1.2). Wind

and other fields are provided every 3 hours on a regular grid of 0.5 � � 0.5 � and 60 levels in the

vertical. Note that a net improvement is guaranteed by the time resolution of analyses: many

authors outlined in their works the bad performances related to the use of analysis fields every 6

hours (Stohl, 1998; Wernli and Davies, 1997; Turato, 2003; Stohl et al., 2004). As a consequence

it was necessary to increase the high spatial resolution too (section 3.1.2).

In the most recent meteorological literature numerical modelling has been applied to exemplary
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case studies because they were representative of recurrent meteorological conditions or because

they occurred during intense measurements campaigns, as it was the case of MAP (Buzzi and

Foschini, 2000; Gheusi and Stein, 2002; Keil et al., 1999; Rotunno and Ferretti, 2001; Medina

and Houze, 2003). These special events happened quite recently, i.e. since the global numerical

models became operational and since the global assimilation network became sufficiently dense to

initializate the global models themself. Actually in the past more extreme events occurred which

were more worth of attention, at least for the amount of precipitation. For two years the European

Center for Medium Range Weather Forecast (ECMWF) has made possible to access ERA40 by all

users from the Member States. ERA40 are high resolution analyses obtained by the modern 4d-Var

assimilation system for the time period from 1954 to 1994. This dataset allows, for the first time,

to study all the extreme precipitation events of the last 50 years. The most intense meteorological

event occurred in Italy (and in particular the considered target area) was the alluvional event of

1966.

In conclusion the events most carefully described and reported in the following section are the

alluvional events of November 1966, November 2000 and November 2002. The model algorithm

and the type of data were the same except for the time resolution of analyses since ERA40 are

given every 6 hours. Furthermore it is realistic to associate larger errors to the ERA40 fields, as

they were obtained from rare observation data.

Note that the considered events fall in November: in fact the most abundant precipitation on the

meridional slopes of Alps are always registered in October or November. Sometimes they are

even preceded by colder episodes producing snow: the high temperatures and the high rate of

precipitation can produce a sudden snow melting increasing the risk of flooding, while summer

storms were not considered. Sometimes they can be really extreme but most of the water vapour

has a local origin (i.e. from evapo transpiration): this kind of water transport has not been analysed

in the present work.
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The choice of the case studies to test the Lagrangian analysis as well as the results from the

computation of ensembles of back trajectories are shown. The chosen extreme precipitation events

are the flood events of 3-5 November 1966, 16-18 November 2000 and 24-26 November 2002.

Emphasis is given to the regional budget analysis over the Mediterranean basin and in particular

to the estimation of the evaporation fluxes contributing to increase the moisture of airstreams

producing intense precipitation over the Alps during the selected events.

4.1 Synoptic characterization of selected events

A comparison among the three synoptic conditions is presented which produced the intense pre-

cipitation events.

4.1.1 Flood event of 3-5 November 1966
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Figure 4.1: 500 hPa geopotential maps from ERA40 reanalyses for 02, 03, 04 and 05 November
1966 at 00 UTC.
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Figure 4.2: Surface pressure maps from ERA40 reanalyses for 02, 03, 04 and 05 November 1966
at 00 UTC.
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Figure 4.3: Surface pressure maps from ERA40 reanalyses for 30 October 1966 00 UTC and 12
UTC, the same for 31 October and 01 November.
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The alluvional precipitation event which hit Italy in 1966 originated in Sardinia in the early

hours of 03 November and ended over Friuli in the late hours of 05 November. The event, short but

intense, was preceded by anomalous climatic conditions (Fea et al., 1968): surface temperature

data show appreciable deviations (-6 � C in the Artic area and +4 � C over the Mediterranean Sea)

from the mean values of the previous 30 years. Artic air invasions of the warm Mediterranean

basin were announced destabilizing the temperate air masses residing over there and enhancing

cyclogenetic conditions.

In figure 4.1 500 hPa geopotential height from ECMWF analysis is reported for 02, 03, 04 and

05 November 1966 at 00 UTC. In the previous days a strong ridge extended northward over the

Atlantic Ocean favouring the formation of a trough over Europe and the descent of cold air toward

the Mediterranean Sea and the Northern Africa on 2-3-4 November. At the beginning (2 Novem-

ber) the trough seemed to be cut off from the main zonal air stream, but during 3 November a new

intense small scale wave, moving over the North Atlantic Ocean along the isobars of the wider

low, contributed to the deepening of the latter in the meridional direction. At the beginning of 4

November the pressure configuration was dominated by a narrow and elongated trough over Eu-

rope drawing, on its west side cold air from Greenland, over Spain and over the Sahara desert in

Algeria; on its east side warm and wet air from the Mediterranean Sea towards Scandinavia.

The surface pressure map of 2 November (Fig. 4.2) showed an unusual synoptic configuration: a

band of anticyclones around 45 � - 60 � N and a low pressure band around 30 � - 45 � N. Within the

latter one 4 low centers can be distinguished:

� a center over the Atlantic Ocean which was related to the 500 hPa trough extending to-

ward the western Spain; this low was going to migrate westward losing importance for the

Mediterranean area;

� a weak low between Turkey and the Balcans moving north-eastward;

� a low center over France and a lee side low between Morocco and Algeria, which were going

to merge and to deepen on 3 November over the western Mediterranean Sea; this was the

low system producing a lot of precipitation over Italy between the 3rd and 4th of November.

During the 3 and 4 November, the initial zonal configuration changed into a dipole with an area of

low pressure over the eastern Atlantic Ocean and Europe and two areas of high pressure over the

central Atlantic Ocean and over the East of Europe.

Over Italy, the event was announced by an increase in surface pressure over the Adriatic Sea and

over North-Eastern of Italy in the night between 2 and 3 November, due to a barrier effect: cold and

dense air masses at low tropospheric levels were driven from the Balcans by south-southeasterly
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Figure 4.4: Surface front charts on 03 November 1966 06 UTC (a), 03 November 1966 18 UTC
(b), 04 November 1966 06 UTC (c), 04 November 1966 18 UTC (d) from Fea et al.,
1968. Pressure isolines differ for 4 hPa. The letter A stands for high pressure, the letter
B for high pressure.

winds and trapped in the Po Valley between the Alps and the Apennines. During the day after a

cold meridionally oriented front, organized in convective bands, extended from the Northern of

Italy towards the South, moved very slowly eastward strongly affecting Liguria and Tuscany in

the night between 3 and 4 November (Fig. 4.4). The convective cold front, clearly seen by the

radar of Aeronautica Militare Italiana (Fea et al., 1968), caused the well known Arno flood which

in particular hit the city of Florence.

East of the cold front, a strong pressure gradient arose generating a narrow warm prefrontal jet with

extraordinary high values of the surface wind intensity over the Adriatic Sea, the South of Italy,

Sardinia and Tunisia. In Venice the highest ever tide was measured: 1.98 m above the mean sea

level. Locally there was also a contribution of the orographic effects, Appennines being oriented

north-west to south-east and forming a sort of funnel with the meridional cold front, forced the

uplift. The warm front, being east of the cold front and ahead of the ”warm conveyor belt”, moved
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quickly along the Adriatic Sea toward the Alps. Nevertheless, although warm air stepped over

the Alpine chain, a cold pool remained trapped at very low level during 3 November 1966. So the

upper warmer air entered the Central Europe, but a sort of surface warm front remained apparently

stable over the Po Valley until 4 November 00 UTC.

In Trentino, most of the precipitation occurred from 3 November 21 UTC to 4 November 12 UTC

(Fig. 4.5). This was mostly produced by the progressive erosion of the cold pool along the Alps.

Figure 4.5: Mean precipitation over Trentino so as simulated from Lagrangian specific humidity
variations in mm � 3h � � 1 in the period from 03/11/66 00 UTC to 05/11/66 21 UTC.

The process was accompanied by temperature rising and conversion of solid precipitation into rain

even at relatively high levels (Fea et al., 1968).

Fea et al. (1968) already performed the evolution of the spatial distribution of specific humidity

on the 850 hPa isobaric surface at 00 UTC of 02, 03, 04, 05 November 1966 starting from the data

of various scattered radiosondes (Fig. 4.6). On this basis they proposed that much of moisture,

producing strong precipitation over Italy, had been advected over the Mediterranean Sea from the

Atlantic a few days before the event: in the following chapters this hypothesis will be examined.
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Figure 4.6: Spatial distribution of specific humidity on the 850 hPa isobaric surface at 00 UTC
of 02 (a), 03 (b), 04 (c), 05 (d) November 1966 (Fea et al., 1968). Contours indicate
specific humidity isolines with intervals of 1 gkg

�

1 (thin contours); bold contour marks
4 gkg

�

1 isoline (shaded where q � 4 gkg �
1).

4.1.2 Flood event of November 2000

On the isobaric surface, 500 hPa a trough developed on 15 November (Fig. 4.7) over Central

Europe extending towards the Iberian Peninsula. Such a configuration resembles the initial syn-

optic pressure distribution of November 1966 (Fig. 4.1): in November 2000 the through was more

elongated and there was no a cut off from the mean zonal flow. The main long wave (the through)

extended to a latitude of 45 � with the 560 dam geopotential height; the short wave moved from

Spain (15 November) eastward. This first short wave was followed by a second one descend-

ing from the North-West of Europe (Greenland, England) to the South of France: after that (17

November) the two short waves merged, enhancing a low pressure tongue extending from the

North-Atlantic Ocean to the western Mediterranean Sea.

The strong winds over Gibraltar on the 15th of November, associated with the cold front, flew over

the Atlas chain thus favouring the formation of a lee-side surface depression (Fig. 4.8). After that
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Figure 4.7: 500 hPa geopotential maps from ECMWF reanalyses for 15, 16, 17 and 18 November
2000 at 00 UTC.

the surface low moved north-eastward embedded in the previous cold front (Fig. 4.9) and rein-

forced by the deepening of the upper level baroclinic trough which was located only a few hundred

kilometers westward. On the 17th November the surface low moved over the Gulf of Genoa as

well as the 500 hPa trough: then the mean hourly precipitation over the target area reached its

maximum values (Fig. 4.10).
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Figure 4.8: Surface pressure maps from ECMWF reanalyses for 15, 16, 17 and 18 November 2000
at 00 UTC.
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Figure 4.9: UKMO surface front charts on 13 November 2000 00 UTC, 14 November 2000 00
UTC, 15 November 2000 00 UTC, 16 November 2000 00 UTC, 17 November 2000
00 UTC, 18 November 2000 00 UTC (pressure isolines differs � for 4 hPa). The letter
H stands for high pressure, the letter L for high pressure.
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In summary, in the event of 2000, the cold front moved slowly from West to East over the

Tyrrhenian Sea and then over Central Italy in the south of the low center. The warm front was

driven by southerly winds against the alpine barrier. It was slightly oriented north-eastward and

not exactly along the zonal direction as in the flood event of 3-5 November 1966.

As previously explained a number of elements are common to both the events. The following

differences have, however, been recognized:

1. In 1966 the narrow and elongated trough extending along the meridians (Fig. 4.1) was more

or less 20 dam deeper: on the 3th November 1966 the 540 dam isoline reached Sardinia,

whereas on the 17th November 2000 it was over Denmark.

2. In 1966 the deeper upper level trough produced a more marked surface pressure gradient

over Italy in the zonal direction causing a stronger wind jet in the meridional direction: over

the southern Adriatic Sea isolines differing by 8 dam were separated by about only 250 km,

roughly corresponding to a wind velocity of 30 m/s. In fact in 1966 the East of Europe

was dominated by a surface anticyclone on 3-4 November, while in 2000 the original cold

front was extended, oblique to meridians, from the West Mediterranean Sea to Polonia and

Russia, thus favouring the deepening of some low centers along the front.

3. In the 2000 case study, the surface low originated essentially over the North Africa, in 1966

besides this contribution, there was already a lee side low over France, amenable to the

preexisting cut-off upper-level low of 2 November. The resulting surface low system over

Italy resulted to be wider and deeper (minimum less than 1000 hPa).

4. The surface high pressure on the East Europe was stronger in 1966 (the 1024 isolines are

over the Balcans and over the south of Italy on 4th November), thus favouring also a marked

pressure gradient at the surface.

5. In 2000 the cold front was rather short, extending north of the coasts of Africa: the cold air

behind could not reach the Sahara desertic region, failing to start a meridional low-level jet

over Southern Italy and over the coasts of Tunisia (Fig. 4.9).

The deepening and extending of the low during the 1966 event over the entire central and western

Europe was combined with the weakening of the preexisting high pressure system, which migrates

westward toward the north Atlantic coasts of America. This anticyclone forced the zonal flow to

move at a very high latitude (60-70 � ). So air masses contributing to precipitation did not come

from the Atlantic, but from northern Europe or North Africa.

In 2000 synoptic conditions were similar but not so extreme. The main low remained farther
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North, near Iceland and the anticyclone over the Eastern Europe remained very weak. So the

surface low over Italy was not attracted by the main trough, and it became a surface cutoff low

persisting over the Gulf of Genoa. The cold front moved toward the South-East being uncoupled

from the low system; on the contrary, the orographic precipitation persisted on 18-19 November

over the Alps, fed by the "Stau" effect.

Figure 4.10: Mean precipitation over Trentino so as simulated from Lagrangian specific humidity
variations in mm � 3h � � 1 in the period from 15/11/66 00 UTC to 18/11/66 21 UTC.

In 2000, extreme values of precipitation were not recorded, but the event lasted for several

days (Fig. 4.10). In Trentino it provoked landslides, but not floods.

4.1.3 Flood event of November 2002

In November 2002, Trentino was hit by an intense precipitation event. The hourly average precipi-

tation over the whole Province is shown in Fig. 4.11: estimations, based on the lagrangian analysis

(section 4.2.1), agree with rain gauge measurements (within � 5 %) in the first day of the event,

but they systematically overestimate precipitation amount (about + 45 %) in the second day, with

the exception of the "tail" of the event, when precipitation was decreasing. The total measured

precipitation amount (average over the area) was 125 mm, but maxima of 255 mm were recorded

at some weather stations. This uneven distribution may be ascribed to the effects of complex orog-

raphy, which is poorly reproduced by the ECMWF models. Two main precipitation spells can be
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Figure 4.11: Mean precipitation over Trentino so as simulated from Lagrangian specific humidity
variations in mm � 3h � � 1 in the period from 24/11/02 00 UTC to 27/11/02 21 UTC.

recognized in Fig. 4.11: the first between 24 and 25 November and the second between 25 and 26

November.

The 500-hPa geopotential height maps from ECMWF 4d-Var analyses (Fig. 4.12) display a baro-

clinic wave extending from the East Atlantic to northern Europe, with a cut-off low over England.

At the sea surface, an intense cyclone, with a minimum of 976 hPa, affected north-central Europe

(Fig. 4.13). By 24 November the wave became deeper and extended its main axis southward, as

the deepening short wave migrated from the mid-Atlantic toward the Iberic peninsula, while the

upper level jet moved toward Spain and the Atlas (Fig. 4.12). As a consequence, a surface low-

pressure system developed downstream of the trough axis near Spain and Morocco (Fig. 4.13) and

an intense south-westerly moisture advection developed in the low and mid troposphere from the

Atlantic Ocean toward northern Italy (Fig. 4.14).
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Figure 4.12: 500 hPa geopotential maps from ECMWF reanalyses for 24, 25, 26 and 27 November
2002 at 00 UTC.
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Figure 4.13: Surface pressure maps from ECMWF reanalyses for 24, 25, 26 and 27 November
2002 at 00 UTC.
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Figure 4.14: Specific humidity maps over 850 hPa surface from ECMWF reanalyses for 22, 23,
24 and 25 November 2002 at 12 UTC.
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At some stages of the event, this moisture stream was enhanced by the contribution of mid-

tropospheric "plumes" from the equatorial African region through the Sahara desert, as it will be

shown in the following sections. Note that the synoptic configuration for the 2002 event is different

from the former:

1. The trough at 500 hPa was over the Atlantic ocean: there was no anticyclone blocking the

zonal flow occurring, with an upper level jet, at a latitude of 40 � .

2. The upper level trough favoured the development of two surface lows on 25 November. One

of the two lows moved into the Mediterranean Sea toward Southern Italy (26 November).

3. In 2002 neither an elongated trough over Italy in the meridional direction occurred (but

rather a cut-off low well developed at all levels), nor a strong pressure gradient producing

strong wind (Fig. 4.9).

4. At a first phase the target area was characterized by south-westerly winds produced by the

approaching low (at the end of 24th November) and later by south-easterly winds induced

by the cyclonic return effect (on 26th November).

The position of the surface cyclone as well as the direction of the warm front were quite similar

to the case of 2000. But in 2002 event the cyclone moved alone in a south-eastward direction

(in 2000 north-eastward in connection with the cold front). Moreover it had a longer cold front

forcing meridional wind over the Gulf of Syrte as well as over the Tyrrhenian and the Adriatic

Sea.
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Figure 4.15: FU-Berlin surface front charts for 21 November 2002 00 UTC, 22 November 2002
00 UTC, 23 November 2002 00 UTC, 24 November 2002 00 UTC, 25 November
2002 00 UTC, 26 November 2002 00 UTC (pressure isolines differs for 4 hPa). The
letter H stands for high pressure, the letter T for low pressure.
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4.2 "Macro-area" analysis and evaporation

Analyses and numerical models provide fields of various quantities at high spatial resolution.

Because of the large amount of data, the analysis domain has been subdivided into 12 macro-

areas shown in Fig. 4.16. Each area corresponds roughly to a distinct geographical domain: the

Figure 4.16: Subdivision of domain in areas

target area (1), the Adriatic and Ionic Sea (2), the Tyrrhenian Sea (3), the West Mediterranean

(4), the central Atlantic Ocean (5), the Atlas chain and the northern side of Sahara (6), the rest of

Sahara (12), the central Mediterranean Sea (7), Spain (8), central Europe (9), eastern Europe (10)

and the northern Atlantic Ocean (11). Boundaries of selected areas have been commonly traced

along meridians and paralleles. Lines easily defined by simple analytical expression have been

drawn. Such a choice allows for condensing most of information in few parameters: this can be

done when a detailed analysis is not necessary, as in the case of the study of water vapour source

distribution. In Fig. 4.18 the spatial and temporal average of evaporation from various areas is

reported summarizing information coming from 16 more figure than Fig. 4.17. Note that the latent

heat flux field has been remapped from ERA40 reanalyses resolution to a resolution of 0.16 � by

means of bi-cubic interpolation to get Fig. 4.17.
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Figure 4.17: Latent heat remapped to a resolution of 0 � 16 � � 0 � 16 � starting from ERA40 analyses
valid on 02 November 18 UTC
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Figure 4.18: Average in time and in space of evaporation and of Lagrangian specific humidity
variation (computed following the method described in the present paragraph) in kg
m

�

2 h
�

1 over various areas (x-axis) in the period from 31/10/66 00 UTC to 04/11/66
00 UTC.
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The latent heat is used to estimate the evaporation rate (per hour) through the simple formula:

ev � Ql

L � T � � 3600 (4.1)

where ev is the evaporation, Ql the latent heat flux of evaporation and L the latent heat coefficient

which depends on absolute temperature (T ). The mean evaporation evk over a specific macro-area

is obtained by

evk � 1
Ak

�
Ak

ev � φ � λ � dφdλ (4.2)

where φ is the longitude and λ the latitude, while Ak is the area of the domain.

4.2.1 Use of macroareas for Lagrangian budgets

Macroareas can be used to summerize information from Lagrangian analysis too. For example the

mean values of position, temperature, humidity, etc. of parcels along their trajectories in passing

over a specific macroarea is simply derived by the following formula:

yk � 1

∑Nki � 1Mi � k
Nk

∑
i � 1
Mi � k
∑
j � 1yi � j � k (4.3)

where yk is the mean value of the physical quantity y over the k macroarea, yi � j � k the value of the
physical quantity y for i-trajectory at the time step j in the passing over the k macro-area, Nk the

number of trajectories passing over k macro-area and Mi � k the number of time steps at which i
trajectory passes over the k-th macro-area.

In the same way the mean variations of position, temperature, humidity, etc. of parcels along their

trajectories, flowing over a specific macroarea, is obtained from the following formula:

δyk � 1
Nk

Nk

∑
i � 1δyi � k (4.4)

where δyk is the mean variation of the physical quantity y over the k macroarea, δyi � k the variation
of the physical quantity y for i-trajectory in the passing over the k macro-area from the entry to the

exit.

It is also possible to define a variance for the variation of the physical quantity δyk over the k
macroarea as:

σ2δyk � 1
Nk 	 1

Nk

∑
i � 1 
 δyi � k 	 δyk � 2 (4.5)

79



4. Back trajectories: applications

Such a formula is used to evaluate the mean values of each physical quantity for parcels over the

macroarea of interest. A similar formula is used to compute the variance σyk of the values of the
physical quantity y over the k macroarea.

In Tab. 4.1 the average values and variances of various parameters over the 12 areas are reported

for all the trajectories ending over Trentino from 03/11/66 21 UTC to 04/11/66 12 UTC.

Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 354 (137) 4.22 (1.74) 0.78 (0.21) 304.0 ( 6.8) 317.0 (2.7) 79 (21) 1 ( 1)
2 2223 209 (146) 6.15 (1.84) 0.57 (0.36) 298.6 ( 6.5) 316.9 (3.1) 23 (12) 3 ( 4)
3 2747 139 ( 80) 6.80 (1.60) 0.40 (0.23) 296.0 ( 4.5) 316.0 (6.2) 14 ( 8) 11 ( 5)
4 1309 202 (133) 3.80 (2.31) 0.30 (0.21) 292.7 ( 6.3) 303.9 (7.2) 20 (14) 16 (12)
5 302 228 ( 57) 4.07 (1.65) 0.37 (0.20) 300.5 ( 5.1) 313.1 (8.4) 13 (13) 17 (14)
6 2123 156 ( 78) 5.43 (2.34) 0.23 (0.18) 298.3 ( 3.7) 314.6 (7.8) 37 (20) 24 (20)
7 2516 104 ( 47) 6.44 (1.63) 0.22 (0.18) 296.0 ( 3.7) 315.0 (6.0) 12 (20) 29 (23)
8 1060 258 (157) 1.87 (1.23) 0.56 (0.29) 290.6 ( 7.8) 296.2 (5.1) 47 (20) 15 ( 9)
9 629 321 (186) 1.64 (1.07) 0.61 (0.29) 291.0 ( 9.5) 295.9 (7.3) 49 (27) 11 ( 9)
10 30 268 ( 85) 1.51 (0.54) 0.68 (0.19) 288.4 ( 5.0) 293.1 (4.3) 39 (19) 12 (12)
11 167 364 (170) 1.30 (1.13) 0.69 (0.22) 295.2 ( 7.2) 299.2 (5.0) 5 ( 8) 21 (20)
12 1061 129 ( 54) 6.18 (1.67) 0.22 (0.22) 301.2 ( 2.7) 319.9 (3.5) 42 ( 9) 43 (26)

Table 4.1: Table summarizing the number of trajectories flowing at least for one time step over the 12 macroareas of
Fig. 4.16 during the event of November 1966. The average values (along with the respective variances) of
the height above the surface, of the specific humidity, of the potential vorticity, of the potential temperature,
of the equivalent potential temperature and of the height of the surface underneath are reported for the the
air parcels staying over the various macroareas. The last column gives the average number of time steps
spent by trajectories over each area.

A similar table (Tab. 4.2) is used to report the average variations and the variances of variations

for the same case study. A separate explanation has to be devoted to the quantity in the last column

in table 4.2. It has been obtained by the following formula

δQTOTk �
3h

1
Nk

∑Nki � 1 ti � k

mass � i �

106 � A1
�
Nk

∑
i � 1

δqi � k � (4.6)

where ti � k are the time steps spent by the i trajectory over area k, δqi � k the variation of specific

humidity along the i trajectory over area k and mass � i � is the mass of the volume represented by

i trajectory (it is hypothesized that mass � i � is conserved along trajectories, while the volume can

change as the air density varies). Mass � i � is computed multiplying the density at the ending time

for the subvolume represented by i trajectory over the final 3D-box (0 � 5 � � 0 � 5 � � 200m). Note

that the quantity of water vapour gained or lost by all the trajectories over area k is divided by the

surface of the target area. So the formula gives the height of water (in mm) that should evaporate
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δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 57 (37) -1.04 (0.82) 0.01 (0.15) 2.30 (1.59) -0.60 (1.34) 48 (32) -0.054
2 36 (31) -0.28 (0.97) 0.08 (0.19) 0.87 (1.30) 0.06 (2.03) 16 (15) -0.014
3 147 (149) -1.74 (2.57) 0.36 (0.34) 4.67 (5.01) -0.05 (3.98) 14 (17) -0.092
4 6 (63) 0.76 (1.46) -0.02 (0.24) 1.28 (3.03) 3.43 (4.87) -2 (36) 0.020
5 -24 (32) 0.29 (0.72) -0.02 (0.15) -0.85 (1.27) -0.07 (2.34) 41 (25) 0.001
6 -12 (66) -0.14 (1.32) 0.03 (0.30) -0.03 (2.58) -0.37 (3.72) -12 (31) -0.008
7 -55 (73) 2.78 (2.56) -0.03 (0.27) -0.25 (2.63) 7.60 (7.50) -8 (16) 0.176
8 -51 (47) 0.54 (0.68) -0.21 (0.35) 0.40 (2.11) 1.95 (3.12) -14 (36) 0.011
9 -48 (46) 0.12 (0.29) 0.07 (0.35) -2.17 (2.37) -1.88 (2.09) -7 (26) 0.002
10 -6 (23) 0.16 (0.22) 0.07 (0.13) -1.01 (1.96) -0.55 (2.29) 24 (17) 0.000
11 -46 (65) 0.58 (0.94) -0.04 (0.28) -0.79 (2.72) 0.90 (3.96) 0 (59) 0.002
12 -11 (58) -0.49 (1.61) -0.12 (0.58) 1.64 (3.43) 0.43 (3.93) -1 (27) -0.008

Table 4.2: The mean variations (as well as the respective variances) of the height of the trajectories in passing over
various macroareas (Fig. 4.16) are reported for the event of November 1966. The same is done for the
variations of the specific humidity, of the potential vorticity, of the potential temperature, of the equivalent
potential temperature and of the height of the surface underneath of the parcels. The last column gives
the quantity of water vapour (computed by the formula 4.6) gained or lost by all the trajectories over each
area.

(or precipitate) over area 1 to have the same overall gain (or loss) of water mass. Furthermore the

computed quantity is normalized to a time lag of 3 hours.

The evolution of θ, θe and PV

In the above table the evolution of potential vorticity PV, potential temperature θ and equivalent
potential temperature θe along trajectories flowing over the 12 macro-areas is reported to help
understanding the physical effects associated to the airflow dynamics and thermodynamics. The

main equations governing the evolution of such parameters require a brief comment.

The Ertel potential vorticity is defined as

PV � 1
ρ

∆θ � ξa � � g � f � ξ � ∂θ
∂p

(4.7)

where ρ is the air density, f the Coriolis parameter and ξa the absolute vorticity. The conservation
of the potential vorticity PV can be described by its budget equation (Haynes and McIntyre, 1987):

dPV

dt
� ∆ � �

gθ̇ � ξa � gF � ∆θ 	 (4.8)
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which states that the change of PV along trajectories is brought about by the diabatic heating θ̇
in the presence of absolute vorticity ξa, and frictional forces F, including effects of turbulence or
dissipation. If the frictional term is negligible, the conservation of the Ertel potential vorticity PV

can be rewritten with some further approximation � ξa � � f as

dPV

dt
� f

ρ
∂Q̇
∂θ

(4.9)

The effect implied by equation 4.9 is schematically depicted in Fig. 4.19a. A positive heating

Figure 4.19: Impact of diabatic heating (shaded) on the budget of potential vorticity (thin lines de-
note potential temperature contours, arrows denote an updraft, and plus/minus signs
refer to the potential vorticity budget). Panel a) depicts instantaneous tendencies,
panel (b) a state of quasi balance (Perrson, 1995).

anomaly induces positive (negative) tendencies for the potential vorticity underneath (aloft). So

for a given stratification the diabatic heating acts to deform isentropes so as to increase (decrease)

the static stability below (above) the air mass where the forcing acts.

From another point of view the diabatic heating induces an updraft with compensatory convergent

(divergent) flow at low (aloft) levels and concurrent vortex stretching (shrinking). Yet, the involved

vertical motion advects the locally produced potential vorticity upward as pointed out by Perrson

(1995). For a very detailed budget calculation on a real case of cold front he demonstrated that in

a state of quasi balance a maximum of potential vorticity is established at the level of maximum

heating (see Fig. 4.19b).
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Water budget and evaporation

The equation for conservation of water mass along a single trajectory can be written as follows:

dq

dt
� FqDISP � FqMICRO (4.10)

dcl

dt
� FclDISP � FclMICRO (4.11)

dcs

dt
� FcsDISP � FcsMICRO (4.12)

where q is the specific humidity of the air parcel flowing along the trajectory, c l is the concentration

of the cloud liquid water particles inside the air parcel (i.e. the mass of liquid water particles per

unit of air mass), cs the concentrations of the cloud solid particles (ice, snow particles). On the

right hand side of each conservation equation the first term F � � �DISP accounts for molecular diffusion

and turbulent transport, the second term F� � �MICRO for microphysical processes occuring inside the

air parcel, such as phase transitions, transformation of cloud particles into precipitation particles

and so on. Another budget equation can be written for the microphysical processes:

FqMICRO � FclMICRO � FcsMICRO � FPREC (4.13)

where FPREC represents the net flux of water precipitating outside the air mass.

So, neglecting terms related to the turbulent fluxes, which can be relevant only in the ABL, Eq.

4.10 becomes:
dq

dt
�
dcl

dt
�
dcs

dt
� FPREC (4.14)

As it will be shown in the following chapter, the second and the third term on the left hand side

of equation 4.14 are often negligible with respect to the specific humidity variations. The exact

quantification of the microphysical processes demands for knowledge of all the microphysical

variables along each trajectory at high spatial resolution. Thus, on the large scale water budget

aiming at quantifying precipitation from an air parcel can be written as:

FPREC �
dq

dt
(4.15)

Nevertheless for air parcels flowing in the ABL the previous equation must be corrected:

FPREC �
dq

dt � FqDISP (4.16)
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where the term FqDISP represents the turbulent fluxes which transfer water vapour originating from

sea surface evaporation to the air parcel.

In order to have an estimate of the mean evaporation over a specific macro-area, the Lagrangian

analysis (from now on called "lagrangian evaporation") is probably more affected by uncertainties

and inaccuracies than the Eulerian budget (from now on called "Eulerian evaporation"). First of

all the variation of specific humidity along a trajectory over an area is generally due both to the

evaporation from the sea and to the re-evaporation of rain droplets falling from higher atmospheric

layers. Lagrangian analysis cannot provide any well based criterion suited to distinguish between

the two contributions. Furthermore there are kinematic difficulties. Taking for granted that the

evaporation corresponds to the variation of air humidity (which is true for trajectories close to the

surface) it is possible to compute the evaporation fluxes through the following formula:

evk � 1
Aeqk

Nk

∑
i � 1

δqi � kmi
δti � k (4.17)

where evk is the mean evaporation over the k macroarea, δqi � k and δti � k the specific humidity varia-
tion and the time lag for i-trajectory in the passing over the kmacro-area, m i the mass of air volume

represented by parcel i, Aeqk the horizontal projection over the area k of the volume represented by

all parcels passing over k macro-area and Nk the number of trajectories passing over k macro-area.

By the numerical discretization, at the ending point, a trajectory is a parcel representative of a

specific quadrangular volume around it (0.5 � � 0.5 � � 200m). So, over the area 1, Aeqk = Ak. Far
away from the end point, the same volume results to be stretched and deformed in an unknown

way and the the horizontal projection of that volume is undefined.

If we assume that, at time t, Aeqk = Aeq1 = A1 so as at the ending point, mean evaporation over

various macroareas estimated starting from the Lagrangian analysis is reported in figure 4.18 (in

this case evaporation estimates are the temporal average over the period from 31/11/66 00 UTC to

04/11/66 00 UTC).

Another possibility is to take into account both the variation of air density along trajectories

(the higher is the air density, the smaller is the area of air parcel subject to the computed evapora-

tion) and variation of the vertical thickness of the atmospheric layer explored by the trajectories.

The squared root of variance for the altitude of trajectories passing over area k can be adopted as

an estimator of the vertical thickness, but it does not contain all information deriving from ver-

tical distribution of particles over the generic macroarea k. The troposphere, 10 km high (H), is

subdivided in M � 30 vertical layers: z � � s � � 

s � 1

2 � H
M
is the average height of the layer s. Once
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Figure 4.20: Scheme representing some trajectories flowing over macroarea k end ending over
area 1. The projection Aeqk of the volume represented by all parcels passing over k
macro-area is shown.

defined the function F � z � s � � k � � 1
Nk

∑ss � � 1 ik � s 	 � , it is instead possible to derive zy percentile such as
F � zy percentile � k � � y. ik � s 	 � is the number of parcels flowing in the atmospheric layer s over area k.
So, even though being slightly arbitrary in the choice of the percentile, the vertical thickness can

be computed as dk � z85 percentile 
 z15 percentile . The refined formula for the evaporation is
evk � � dz � k �

dz � 1 � ρ0
ρk � � 1A1

Nk

∑
i � 1 δqi � kmi

δti � k � (4.18)

This formulation has given better results as shown in figure 4.21.

4.3 Analys is o f t he water budget fo r t he 3 cas e s tudies

4.3.1 Event of November 1966

The duration of the precipitation event was 3 days (Fig. 4.5), but it is more meaningful to take

into account a shorter time period when most of the precipitation occurred (from 3 November 21

UTC to 4 November 12 UTC). This allows to describe the properties of the air masses that actually

contributed to the flood. As expected, from an Eulerian perspective, most evaporation took place

over the sea (Fig. 4.18 and Fig. 4.17). Nevertheless a look to trajectories ending to the target area
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Figure 4.21: Average in time and in space of evaporation and of Lagrangian specific humidity
variation (computed following the refined method of Eq. 4.18) in kg m

�

2h
�

1 over
various areas (x-axis) in the period from 31/10/66 00 UTC to 04/11/66 00 UTC. The
subdivision of domain in areas is also reported.

on 04/11/1966 00 UTC (Fig. 4.22) clearly shows that areas 3, 4, and 7 are the most contributions

to evaporation which can provide water for the subsequent precipitation over the Alps (within 4

days from the arrival time).
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Figure 4.22: Five-days backtrajectories ending over Trentino at 04/11/1966 00 UTC.

The lagrangian water budget (Tab. 4.1 and Tab. 4.2 and Fig. 4.5), evaluated as explained in

the previous section, indicates that the main source of water vapour is over area 7, i.e. the Central

Mediterranean in front of the coasts of Tunisia and Lybia. It is indead reasonable that the most

remarkable gain of water vapour along trajectories over area 7 was mainly due to the evaporation

over the sea. Trajectories were, on average, 1000m high above sea level, which means that many

of them gained water vapour by the turbulent fluxes within the boundary layer. This hypothesis

is confirmed by the large increase of equivalent potential temperature (+7.60 K), whereas the po-

tential temperature remained rather constant (-0.25 K). Air was far from saturation state and there

was a supply of water vapour from outside.

Moreover the latter is a region where trajectories underwent a mean descending motion: as a

consequence potential temperature was constant and the relative humidity RH decreased. Never-

theless evaporation was so strong that RH increased along the trajectories (+12 %).

By contrast, over the Tyrrhenian Sea (area 3) air parcels displayed a considerable increase in po-

tential temperature (+4.67 K), almost costant values of equivalent potential temperature (-0.05 K),

and trajectories flew at an average height of 1400 m a.s.l. In the period relative to the studied

event area 3 was directly affected by a cold front. Trajectories were too high to gain water vapour

through mechanical turbulent fluxes. Trajectories were almost at saturation and, therefore their

ascent (+1470m), characterized by increasing values of PV (+0.36 PVU), caused the condensation
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of water vapour to form cloud droplets (-1.74 g/kg of specific humidity).

Projections of trajectories flowing over area 3 on the underlying horizontal surface displayed a

gentle rising (+140m). This seems to indicate that the orographic effect on precipitation was quite

negligible over the Tyrrenian Sea in comparison to the cyclonic ascent ahead the cold front (warm

conveyor belt). It might be important over the Alps (area 1): the slope of the trajectories was

considerably lower than the corresponding slope of the underlying topography. There should be a

"shrinking" effect, at least for lower air masses.

Over area 4, trajectories flew at a costant height experiencing increasing values of both poten-

tial temperature (+1.28 K) and equivalent potential temperature (+3.43 K). This means that there

was a double contribution of latent heat fluxes from outside (the evaporation on the sea surface

resulting in an increase of θe) and from the condensation of water vapour, resulting in the increase
of θ. Reasonably the first effect can be ascribed to the trajectory behaviour in the southern part of
the area 3 (at the boundary with areas 6 and 7), while the condensation of water vapour was more

effective in the north-western part close to area 3.

Back to Figure 4.21, Lagrangian analysis shows us that most of the precipitation over Italy,

as detectable using the ECMWF analysis, was related to the evaporation over the Gulf of Gabes

and over the Sicily Channel. Therefore surface evaporation at areas 3 and area 4, as inferred after

Eulerian analysis, was only partially contributing to the water budget of the air volume moving

from an irregular space over the Mediterranean Sea to the rectangular ending-box over Trentino.

Figure 4.23 shows the evolution of the evaporation rate over the areas of interest. Looking at

a small subarea within area 7 (Fig. 4.25), over which most of the trajectories flew, the Eulerian

analysis points out that the highest evaporation rate took place from 01 November 00 UTC to 02

November 6 UTC (Fig. 4.24).
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Figure 4.23: Evolution of mean "Eulerian evaporation" rate (kgm
�

2h
�

1) over four areas (diamonds
for area 3, triangles for area 4, squares for area 6 and bold circles for area 7).

Figure 4.24: Evolution of mean "Eulerian evaporation" rate (kgm
�

2h
�

1) over area 7 and over a
smaller area inside it.
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Figure 4.25: Boundaries of the sub-area within area 7 used to estimate the sensitivity of the evap-
oration rate to the macro-area dimension
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4.3.2 Event of November 2000

In the case study of November 2000 the average precipitation recorded over Trentino from 16/11/00

21 UTC to 17/11/00 21 UTC was of 5-6 mmh
�

1 (Fig. 4.10). In 1966 the measured value of mean

precipitation over 3 and 4 November was 10 mmh
�

1, but since precipitation occured essentially

over the central 24 hours, a realistic value of the mean precipitation was 18 mmh
�

1. So, in the

event of 2000, less than 70 % of the mean precipitation of the 1966 event was recorded. This is a

clear difference in intensity of the two events.

Simulated precipitation is underestimated by a 50 % (Fig. 4.26): it seems to be a typical bias of

the trajectory method that has been implemented in the present work. Probably it is not only to

be ascribed to the algorithm itself but to the ECMWF analyses data. Note that the climatology

of precipitation forecast by the ECMWF deterministic model is systematically characterized by a

considerable underestimation of the precipitation rate over Trentino (Schmidli et al., 2002; Rubel

and Rudolf, 2001).

Figure 4.26: Average in time and in space of evaporation and of Lagrangian specific humidity
variation (computed following the refined method of Eq. 4.18) in kgm

�

2h
�

1 over
various areas (x-axis) in the period from 16/11/00 21 UTC to 17/11/00 21 UTC.
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Figure 4.27: Average in time and in space of evaporation and of Lagrangian specific humidity
variation (computed following the refined method of Eq. 4.18) in kg m

�

2h
�

1 over
various areas (x-axis) in the period from 16/11/00 21 UTC to 17/11/00 21 UTC. Here
the "Eulerian evaporation" has been computed averaging the evaporation fields only
over the time during which trajectories flow over the each specific macroarea.

Figure 4.28: Evolution of mean evaporation rate (kgm
�

2h
�

1) over 4 areas (diamonds for area 3,
triangles for area 4, squares for area 6 and bold circles for area 7) 16/11/00 21 UTC
to 17/11/00 21 UTC.
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A comparison between "Eulerian" and "Lagrangian" evaporation estimates (Fig. 4.26 and

4.28) show very different values. Nevertheless it is clear that, even in nature, the (Eulerian) evap-

oration over a geographical area does not correspond to the specific humidity increments experi-

enced by an air mass along its trajectory (see also 4.3 and 4.3). This is the case, for example, of

trajectories flowing aloft in the mid-troposphere without the effects of real surface evaporation. So

the apparent strong underestimation outlined in Fig. 4.26 may be interpreted as if, during the event

of November 2000, the air masses flowing along the trajectory carried the water vapour from far

away, outside the analysed domain.

In order to avoid as much as possible that such discrepancies derive from the adopted formulas a

slight change has been performed in the Eulerian estimation of evaporation. The average evapora-

tion has been computed on a selected temporal window instead of over the whole event. For each

one of the 12 macroareas, the average times of trajectory entry and exit have been computed: the

two times define the period during which trajectories probably had change in the moisture content

because of the evaporation (or the precipitation) over that area. Figure 4.27 clarifies that there are

no big differences in the results for the 2000 event. Anyway such a correction has been automati-

cally adopted also for the other cases.

The mean "Eulerian evaporation" computed over various areas is only the 20-30 % lower than in

the case of 1966: strong evaporation alone over the Mediterranean Sea (or high sea surface tem-

perature) is not a good index for forecasting extreme precipitation.

A further interpretation of the water mass budget for the 2000 event is provided in chapter 6 on

the basis of cluster analysis.

4.3.3 Event of November 2002

In the case of 2002 the average precipitation recorded in Trentino from 24/11/02 18 UTC to

26/11/02 18 UTC was 5 mmh
�

1 (Fig. 4.11). The event can be subdivided into two phases: the

first from 24 November 18 UTC to 25 November 09 UTC, the second from 25 November 21 UTC

to 26 November 12 UTC. In each phase the recorded mean precipitation rate was 6 to 7 mm, that

is 70 % less than the mean precipitation in 1966 (as in the case of 2000).

First phase

In the first phase, simulated precipitation is underestimated by 70 % while there is a tendency to

the overestimation of the evaporation over the macro-areas 3, 4 and 7 (Fig. 4.29). In other words

ECMWF analyses seem to be too dry. Another possibility is that there was strong convection over

the target area: the precipitation measured by rain gauges was balanced by strong humidity fluxes
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 4140 352 (140) 3.39 (1.75) 0.61 (0.26) 300.7 (6.2) 311.1 (3.5) 67 (41) 3 (5)
2 3439 271 (146) 3.92 (2.03) 0.56 (0.30) 299.5 (6.0) 311.4 (3.6) 19 (12) 5 (9)
3 3944 253 (146) 3.91 (2.36) 0.53 (0.32) 300.0 (5.6) 311.8 (4.0) 14 (8) 10 (6)
4 2311 225 (160) 4.67 (2.31) 0.58 (0.35) 296.8 (6.6) 310.6 (4.8) 9 (10) 23 (17)
5 1124 348 (150) 1.72 (1.73) 0.74 (0.72) 298.5 (6.4) 303.8 (6.9) 3 (8) 16 (12)
6 3046 203 (116) 3.77 (1.68) 0.33 (0.35) 302.4 (3.8) 314.1 (3.3) 37 (25) 14 (9)
7 2325 194 (114) 4.00 (2.23) 0.33 (0.31) 301.7 (4.1) 314.0 (4.1) 31 (34) 13 (17)
8 1085 238 (166) 3.46 (2.19) 0.65 (0.65) 293.3 (6.7) 303.4 (5.3) 35 (22) 18 (16)
9 371 232 (151) 3.79 (1.73) 0.53 (0.23) 292.8 (8.4) 304.0 (6.9) 55 (37) 16 (19)
10 333 353 (28) 2.40 (0.52) 0.15 (0.05) 303.6 (0.4) 311.3 (1.7) 48 (30) 17 (10)
11 806 255 (193) 3.69 (1.79) 0.24 (0.22) 296.9 (11.8) 307.9 (8.5) 2 (3) 36 (28)
12 2529 186 (92) 2.81 (1.61) 0.35 (0.27) 301.9 (4.0) 310.7 (3.9) 39 (11) 47 (23)

Table 4.3: Table summarizing the number of trajectories flowing at least for one time step over the 12 macroareas of
Fig. 4.16 during the event of November 2000. The average values (along with the respective variances) of
the height above the surface, of the specific humidity, of the potential vorticity, of the potential temperature,
of the equivalent potential temperature and of the height of the surface underneath are reported for the the
air parcels staying over the various macroareas. The last column gives the average number of time steps
spent by trajectories over each area.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 52 (47) -0.60 (0.84) 0.01 (0.39) 1.34 (1.83) -0.35 (1.86) 75 (60) -0.022
2 13 (40) 0.03 (0.81) 0.01 (0.35) -0.12 (1.41) -0.06 (2.09) -9 (24) 0.002
3 41 (59) 0.05 (1.32) 0.07 (0.44) -0.53 (2.13) -0.38 (3.21) 14 (18) 0.002
4 63 (132) -0.71 (2.40) 0.19 (0.54) 2.23 (5.12) 0.21 (5.06) -21 (34) -0.014
5 -39 (76) 0.28 (0.94) -0.10 (0.31) -0.17 (1.94) 0.70 (3.08) 15 (25) 0.002
6 58 (105) 0.05 (1.55) 0.00 (0.41) -0.74 (3.22) -0.63 (3.36) 8 (33) 0.002
7 -13 (42) 0.52 (1.80) 0.03 (0.32) -0.83 (1.86) 0.58 (4.32) -7 (12) 0.014
8 -59 (105) 0.61 (1.97) 0.04 (0.55) -1.56 (3.70) 0.08 (4.01) 5 (38) 0.008
9 -8 (68) -0.18 (1.27) 0.12 (0.48) -0.87 (2.56) -1.43 (3.30) 48 (60) -0.001
10 -52 (60) -0.24 (0.36) -0.01 (0.05) -1.00 (0.77) -1.75 (1.10) -26 (25) 0.000
11 74 (122) 0.00 (2.11) -0.14 (0.34) 0.80 (3.03) 0.71 (3.97) -7 (12) 0.000
12 -50 (51) 1.27 (1.36) 0.02 (0.41) -0.51 (2.95) 3.33 (3.66) 24 (22) 0.011

Table 4.4: The mean variations (as well as the respective variances) of the height of the trajectories in passing over
various macroareas (Fig. 4.16) are reported for the event of November 2000. The same is done for the
variations of the specific humidity, of the potential vorticity, of the potential temperature, of the equivalent
potential temperature and of the height of the surface underneath of the parcels. The last column gives
the quantity of water vapour (computed by the formula 4.6) gained or lost by all the trajectories over each
area.

due to evaporation.
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4. Back trajectories: applications

Figure 4.29: Average in time (over the period from 24/11/0218 UTC to 26/11/02 18 UTC) and
in space of evaporation over various areas (x-axis). Lagrangian specific humidity
variation in kgm

�

2h
�

1 over various areas computed following the refined method of
Eq. 4.18) for the first phase of the 2002 event.

Figure 4.30: Evolution of mean evaporation rate (kgm
�

2h
�

1) over 4 areas (diamonds for area 3,
triangles for area 4, squares for area 6 and bold circles for area 7) 24/11/0218 UTC
to 26/11/02 18 UTC.
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4. Back trajectories: applications

Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 360 (145) 3.34 (2.06) 0.41 (0.25) 302.2 (5.8) 312.4 (2.7) 65 (49) 3 (5
2 1699 268 (156) 4.51 (2.23) 0.44 (0.25) 299.4 (6.5) 312.9 (3.3) 19 (11) 4 (10
3 2229 270 (169) 3.99 (2.21) 0.38 (0.30) 300.6 (5.7) 312.7 (2.8) 20 (11) 9 (8
4 2348 309 (159) 2.89 (1.59) 0.27 (0.14) 302.5 (5.1) 311.5 (2.4) 12 (8) 13 (5
5 2136 382 (167) 1.94 (1.71) 0.32 (0.14) 303.1 (7.9) 309.1 (5.4) 3 (7) 23 (16
6 2561 286 (147) 2.87 (1.66) 0.29 (0.15) 303.2 (4.2) 312.1 (2.6) 68 (27) 17 (13
7 601 98 (67) 5.30 (1.74) 0.49 (0.34) 298.2 (3.4) 314.1 (2.5) 42 (43) 9 (10)
8 421 298 (140) 3.32 (1.49) 0.37 (0.20) 299.5 (7.6) 309.6 (6.9) 27 (21) 8 (8
9 310 386 (140) 2.56 (1.37) 0.34 (0.15) 301.8 (6.3) 309.8 (4.3) 38 (21) 4 (7
10 0 0 (0) 0.00 (0.00) 0.00 (0.00) 0.0 (0.0) 0.0 (0.0) 0 (0) 0 (0)
11 1022 322 (74) 4.14 (1.35) 0.44 (0.12) 301.2 (4.1) 313.7 (3.2) 1 (2) 45 (16
12 1557 228 (87) 2.82 (1.57) 0.33 (0.17) 305.2 (5.0) 314.1 (2.8) 45 (13) 43 (27

Table 4.5: Table summarizing the number of trajectories flowing at least for one time step over the 12 macroareas of
Fig. 4.16 during the first phase of the event of November 2002. The average values (along with the respec-
tive variances) of the height above the surface, of the specific humidity, of the potential vorticity, of the
potential temperature, of the equivalent potential temperature and of the height of the surface underneath
are reported for the the air parcels staying over the various macroareas. The last column gives the average
number of time steps spent by trajectories over each area.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 36 (48) -0.51 (0.76) 0.00 (0.37) 1.34 (2.09) -0.07 (2.17) 74 (63) -0.013
2 26 (29) -0.07 (0.56) 0.01 (0.39) 0.89 (1.07) 0.71 (1.58) -15 (29) -0.001
3 31 (49) 0.10 (0.89) 0.09 (0.39) -0.25 (1.56) 0.02 (2.42) 14 (17) 0.002
4 15 (53) 0.44 (0.88) -0.03 (0.23) -0.69 (1.34) 0.61 (2.66) -35 (31) 0.009
5 -39 (77) 0.62 (1.25) 0.02 (0.18) -0.12 (3.12) 1.74 (4.90) 26 (23) 0.006
6 16 (71) -0.04 (1.00) 0.02 (0.29) -0.38 (2.07) -0.50 (3.00) 15 (27) -0.001
7 -20 (21) 1.37 (1.57) 0.06 (0.40) -0.84 (1.02) 2.95 (3.99) -13 (13) 0.008
8 -8 (44) 0.03 (0.77) 0.00 (0.19) -0.53 (1.37) -0.45 (2.03) 5 (24) 0.000
9 17 (36) -0.13 (0.49) -0.01 (0.18) 0.61 (1.26) 0.26 (1.07) 68 (57) 0.000
10 0 (0) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0 (0) 0.000
11 307 (160) -4.11 (3.11) -0.10 (0.36) 10.35 (7.10) -1.07 (4.46) -1 (6) -0.003
12 -63 (54) -0.15 (0.79) -0.10 (0.18) -1.42 (2.37) -1.91 (3.13) 12 (17) -0.001

Table 4.6: The mean variations (as well as the respective variances) of the height of the trajectories in passing over
various macroareas (Fig. 4.16) are reported for the first phase of the event of November 2002. The same
is done for the variations of the specific humidity, of the potential vorticity, of the potential temperature,
of the equivalent potential temperature and of the height of the surface underneath of the parcels. The
last column gives the quantity of water vapour (computed by the formula 4.6) gained or lost by all the
trajectories over each area.
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4. Back trajectories: applications

Second phase

In the second phase, simulated precipitation is underestimated by only 30 % (Fig. 4.11). Evapo-

ration values computed with the Eulerian and with the Lagrangian method are not very different

(Fig. 4.31).

Figure 4.31: Average in time (over the period from 24/11/0218 UTC to 26/11/02 18 UTC) and
in space of evaporation over various areas (x-axis). Lagrangian specific humidity
variation in kgm

�

2h
�

1 over various areas computed following the refined method of
Eq. 4.18) for the second phase of the 2002 event.
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4. Back trajectories: applications

Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 3220 349 (140) 4.20 (1.85) 0.45 (0.27) 303.0 (6.1) 315.9 (1.9) 63 (46) 3 (5
2 2394 247 (157) 5.34 (2.29) 0.38 (0.31) 300.1 (6.3) 316.1 (2.7) 16 (9) 5 (11
3 3201 241 (142) 4.59 (1.78) 0.34 (0.23) 301.4 (5.1) 315.4 (2.6) 14 (8) 13 (6
4 1030 297 (120) 3.33 (1.41) 0.35 (0.20) 302.9 (5.3) 313.3 (4.2) 25 (15) 5 (5
5 1192 306 (113) 2.82 (1.89) 0.20 (0.11) 306.6 (3.9) 315.6 (5.8) 7 (9) 34 (10
6 3071 210 (111) 3.78 (1.42) 0.27(0.23) 303.7 (4.1) 315.4 (3.7) 30 (12) 9 (4)
7 2913 209 (131) 3.97 (1.69) 0.32 (0.33) 302.8 (4.6) 315.1 (3.2) 24 (36) 8 (9
8 194 314 (135) 3.24 (1.54) 0.36 (0.19) 298.7 (6.9) 308.6 (7.2) 36 (17) 8 (8)
9 171 437 (72) 3.01 (0.89) 0.52 (0.16) 306.6 (3.1) 316.2 (1.6) 42 (22) 2 (1)
10 0 0 (0) 0.00 (0.00) 0.00 (0.00) 0.0 (0.0) 0.0 (0.0) 0 (0) 0 (0)
11 359 315 (66) 5.05 (1.46) 0.35 (0.11) 302.9 (3.4) 318.2 (2.9) 0 (1) 26 (11
12 3009 222 (106) 3.90 (1.95) 0.26 (0.13) 303.8 (5.5) 315.9 (5.0) 41 (10) 43 (19)

Table 4.7: Table summarizing the number of trajectories flowing at least for one time step over the 12 macroareas of
Fig. 4.16 during the second phase of the event of November 2002. The average values (along with the
respective variances) of the height above the surface, of the specific humidity, of the potential vorticity, of
the potential temperature, of the equivalent potential temperature and of the height of the surface under-
neath are reported for the the air parcels staying over the various macroareas. The last column gives the
average number of time steps spent by trajectories over each area.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 58 (56) -0.87 (1.06) 0.01 (0.30) 1.85 (2.54) -0.57 (1.76) 80 (66) -0.024
2 21 (27) 0.08 (0.86) 0.06 (0.29) 0.38 (1.42) 0.60 (1.96) -15 (23) 0.003
3 70 (78) 0.55 (1.55) 0.07 (0.44) -0.97 (3.08) 0.56 (2.73) 19 (24) 0.017
4 17 (43) 0.19 (0.83) -0.01 (0.18) 0.34 (1.60) 0.91 (2.07) -27 (43) 0.002
5 -124 (125) 0.19 (1.41) 0.00 (0.13) -1.55 (2.21) -1.05 (4.33) 28 (14) 0.001
6 12 (57) -0.17 (0.70) 0.08 (0.31) -0.80 (1.10) -1.34 (1.95) -10 (32) -0.005
7 0 (44) 0.36 (1.14) 0.01 (0.22) -0.48 (1.32) 0.50 (3.03) -9 (17) 0.011
8 5 (45) -0.46 (0.90) 0.01 (0.13) 0.49 (1.63) -0.78 (2.31) 3 (22) 0.000
9 57 ( 38) -0.69 (0.50) -0.02 (0.17) 2.32 (1.57) 0.30 (0.65) 75 (55) -0.001
10 0 (0) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0 (0) 0.000
11 325 (105) -5.03 (2.78) -0.09 (0.19) 12.74 (5.23) -1.11 (3.65) 0 (2) -0.005
12 -27 (76) -0.17 (1.26) 0.00 (0.22) -0.32 (2.80) -0.77 (3.71) 8 (11) -0.002

Table 4.8: The mean variations (as well as the respective variances) of the height of the trajectories in passing over
various macroareas (Fig. 4.16) are reported for the second phase of the event of November 2002. The same
is done for the variations of the specific humidity, of the potential vorticity, of the potential temperature,
of the equivalent potential temperature and of the height of the surface underneath of the parcels. The
last column gives the quantity of water vapour (computed by the formula 4.6) gained or lost by all the
trajectories over each area.
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5 Cluster analysis: method and applications

The identification of the flow patterns which mostly contributed to precipitation events requires

suitable gathering of ensembles of trajectories into few remarkable and representative bundles.

Various classification methods and, in particular, clustering techniques are presented here. The

attention is mainly focused on the adoption of the most suitable phase space where trajectories

can be represented as points and the "distance" between two trajectories is easily the euclidean

distance between the respective points. This allows for gathering together similar trajectories of

the ensemble and obtaining fewer final clusters. Trajectories have often been used in the literature

to decipher individual flow situations, but suitable methods of analysis to classify large sets of

trajectories have been only recently developed (see next sections).

5.1 Flow climatologies

Trajectory analyses were first used for flow climatologies: large sets of 5 to 15-day back trajec-

tories were calculated over a time span of several years and their transport directions and travel

speeds were classified according to suitable criteria. These statistical criteria were defined to dis-

criminate, for instance, between oceanic, clean continental and polluted continental air masses.

An early example of this technique is the study of Miller (1981). He calculated more than 7000

back trajectories ending over Hawai Islands and classified them into five transport sectors. Many

authors used variations of this technique, mostly to group air and precipitation chemistry data to

roughly identify the source areas of air pollutants, namely those transport sectors associated with

high pollutant concentrations at the receptor site (Henderson and Weingartner, 1982; Colin et al.,

1989; Miller, 1987; White et al., 1994).

5.2 Classification of trajectories in CETs

A similar procedure has been later introduced to classify a large number of trajectories covering

the same time period, but starting from a three dimensional domain (Schär and Wernli, 1993;
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Wernli and Davies, 1997; Rossa, 1995). The analysis can yield limited ensembles of trajectories

from the large pool depending on specific dynamically based criterion. Wernli and Davies (1997)

classified the selection criteria as follows:

� A priori criteria based upon the spatial coordinates and physical properties of the air parcels

at the reference time. For example the air parcel flowing in the stratosphere at the reference

time must have a potential vorticity value exceeding 2 potential vorticity units (PVU).

� A posteriori criteria based upon the time trace either of the air-parcel paths (e.g. significant

ascent, or significant increase of specific humidity) where signi f icant means larger than a

specified threshold.

� A combination of a priori and a posteriori criteria such as an a priori constraint to identify

stratospheric air and an a posteriori constraint of significant descent.

Using suitable criteria and thresholds, the resulting ensemble of trajectories shows a coherent

structure: in this case one can define a coherent ensemble o f tra jectories (CET). A powerful

application of the trajectory models is the exploration of the extratropical cyclones to reveal the

existence of coherent Lagrangian flow structures and to identify their nature (section 5.3).

5.3 The use of CET methods to analyse the structure of cyclones

Originating from the work of Browning (1971) and Carlson (1980), the conveyor-belt model is

based (as shown above) on the analysis of the equivalent isentropic surface maps within a system-

relative frame moving with the mean speed of the cyclone, assuming that the air parcels really

remain on those surfaces (this is generally true above the ABL, but it can be misleading with

latent heat fluxes).

Another concept, which is related to the air streams and purely based upon Eulerian analysis, is

that of "tropospheric rivers" (Newell et al., 1992). These are filaments in the field of the vertically

integrated water vapour flux

Jq � g � 1 �
0
p0vqdp (5.1)

where v is the horizontal wind vector, p0 is the pressure at the surface and q is the specific humid-
ity. They persist for several days over the mid-latitude oceans: the main contribution to Jq stems
from the lower troposphere ahead of surface cold fronts.

Wernli and Davies (1997) and Wernli (1997) adopted a Lagrangian-based strategy to test such

Eulerian conceptual schemes. They first computed a large number of trajectories over a certain

time period by starting from a three dimensional box encompassing the whole domain of interest;
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then they selected coherent ensembles of trajectories by using the methods described in section

5.2. They showed that a CET can be related to the concepts of conveyor belt and tropospheric

river and that it can be represented by the flowing of a single macro air parcel.

First of all Wernli (1997) focused on the moist ascending CETs during the cyclonic transition from

an incipient frontal wave to a vertically coherent vortex. The geometrical criterion (ascent larger

than 620 hPa) identified two distinct and parallel-flowing CETs (named X and Y). The physical

criterion (decrease of specific humidity larger than 12 g kg
�

1) selects only one CET, which cor-

responds qualitatively to CET X. The third criterion (water vapour flux larger than 0.17 m s
�

1)

identifies the CET R.

All the three ensembles, whose selection seems to have a small sensitivity to the threshold values,

start from the ABL in the warm sector ahead of the cold front, but at different latitudes. CET Y

starts moving northward only 200 km south-east of the growing cyclone; then, during the ascent,

it bends around the north-eastern side of the depression close to the low center. In this phase most

of the water vapour content condenses and the mean potential temperature values increase because

of the diabating heating related to water vapour condensation. Moreover PV values first increase

from typical atmospheric values up to 1-2 PVU in the saturation area (low-middle level positive

PV anomaly) before returning to the original values (high level negative PV anomaly).

CET X is initially located 1400 km south of the incipient cyclone in the low-level jet region ahead

of the cold front. It flows rapidly northward ascending in a rearward-sloping manner: in fact,

after 1 day, it is flowing over the cold side of the surface polar front. Nevertheless, looking at the

values of various physical variables, this ensemble experiences similar physical processes to those

experienced by CET Y. It only differs for its higher decrease in specific humidity, which strongly

contributes to the precipitation along the cold front of the cyclone.

The third CET (R) is slightly different, because its rapid ascent is limited to the second part of a

2-day period and reaches the middle troposphere, but not the tropopause (as well as CETs X and

Y). In the first day, trajectories move in a sort of low level moist jet just ahead of the surface cold

front. In the second day they approach the warm front east to the cyclone center entering the zone

of upward motion and contributing to the precipitation over that area; after that they begin to fan

out in an anticyclonic movement.

Wernli (1997) developed the above analyis in depth by studying the evolution of 2-day CET prop-

erties. He showed that early X-CETs are characterized by an anticyclonic path in agreement with

the shape of the upper level trough. Later, parcels turn cyclonically around the vertically coherent

vortex. Y-CETs are present only during the main cyclogenetic phase, whereas the R-CETs tend

to be no more compact and coherent during the cyclone deepening. Moreover, an animated visu-

alization of the CETs reveals the existence of airstreams (’flexible tubes’) through which various
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macro-parcels are ascending from the moist boundary layer into the upper troposphere. After com-

paring such airflows with the previous interpretation of moist airstream, Wernli (1997) concluded

that the so called ’tropospheric rivers’ mark a region of rapid and coherent passage, rather than

constituting a Lagrangian entity by itself. Viceversa the moist ascending CETs resemble more the

moist ’flexible tubes’ of CETs.

Indeeed the Lagrangian analysis of Wernli (1997) allowed to refine the conceptual model of

Figure 5.1: Airflow and precipitation within a developing extratropical frontal cyclone (based on
Browning and Roberts, 1994). The main warm conveyor belt is labelled W1. The
ascending cold conveyor belt (CCB) is responsible for a large portion of the cloud
head. The lowest part of the warm conveyor belt is labelled W2: it peels off and
ascends in the top part of the cloud head. The westward component of W2 and the
CCB are associated with the ageostrophic transverse circulation.

the WCB, which bifurcates when approaching the cyclonic centre. The model, later proposed in

Browning and Roberts, 1996 (Fig. 5.1), shows three stages in the evolution of bifurcating WCB in
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association with the upper level vortex: at the end the W1 part overruns the tail of W2 and turns

anticyclonically in the upper ridge, while the flow fanning out within W2 forms the top part of the

emerging cloud head of the developing cyclone. Note that the W2 warm conveyor belt corresponds

to Y-CET airstream in Wernli (1997), while the W1 warm conveyor belt includes both the X-CET

and the R-CET airstreams.

Wernli (1997) applied the same analysis to the study of DI using the selection criterion that the

descent must be larger than 350 hPa and that PV must have initial values larger than 2 PVU.

Trajectory analysis resulted to be powerful to better characterize the tropopause folding and the

intrusion of stratospheric air in the middle troposphere, but it did not modify the scheme of mid-

latitude cyclone structure.

5.4 Cluster analysis

Cluster analysis is a multivariate statistical technique to split a data set into a number of groups

by means of repeated gathering them in suitable clusters. The meteorological applications of this

technique available in the literature are essentially restricted to the the field of the "ensemble fore-

casting". An "ensemble forecast" consists in a number of simulations (black trajectories in Fig.

Figure 5.2: Ensemble forecasting: black trajectories are the various simulations undertaken with
the same forcing, but where small perturbations to initial conditions have been intro-
duced. The simulation ensemble can be classified by the clustering techniques in some
scenarios (the light blue circles) representing the main possible evolutions of the atmo-
spheric conditions. Each green trajectory is the average of all trajectories/simulations
belonging to that cluster.

5.2) performed with the same boundary conditions, but where small perturbations to remote ini-

tial conditions have been introduced to estimate the uncertainty associated with the forecast. The
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simulation ensemble can be classified by the clustering techniques in some scenarios representing

the main possible evolutions of the atmospheric conditions.

Cluster analysis is commonly described as an objective classification method, but this is not true,

since the selection of the clustering algorithm, the specification of the distance measure and the

number of clusters remain, to some extent, subjective. Kalkstein et al. (1987), who evaluated

three different clustering procedures for use in synoptic climatological classification, remarked

the question of subjectivity: the selection of the proper clustering procedure to be used in the

development of an objective synoptic methodology may have far-reaching implications on the

composition of the final homogeneous groups. Various clustering procedures can be used in me-

teorological applications (see Kalkstein et al., 1987 for an introduction to this kind of methods).

Moody and Galloway (1988) were the first authors to import clustering methods in the field of

trajectory computation. In their works, trajectory clustering technique was applied to a wide set of

computed forward/backward trajectories starting/ending from a target point over several years in

order to identify the most recurrent flow patterns over the selected period. The motivation of that

study was air chemistry monitoring and their focus was to relate on periods with high pollutant

concentration with specific synoptic configurations favouring the advection of pollutants from the

source regions to the target areas. In all the subsequent studies the same statistical approach has

been followed; sometimes trajectory cluster analysis has been associated with Principal Compo-

nent Analyses to better combine trajectory clusters with the most recurring synoptic conditions

(Avila and Alarcon, 1999).

In this kind of studies each trajectory can be defined by its physical coordinates or even by the val-

ues of other dynamic and thermodynamic variables (humidity, potential vorticity, ...) which can

better identify the state of the air parcel. This implies the adoption of a suitable trajectory phase

space where each point represents one whole trajectory: accordingly its generalised coordinates

will include, besides spatial coordinates of points reached at various time step, the values of ad-

ditional dynamic and thermodynamic variables at the same times (the phase space adopted in the

present work will be described in detail in section 5.5). In this hyperspace each trajectory is repre-

sented by a point and the clustering procedure is applied to these points: the Euclidean distances

in the phase space are a measure of the difference or likelyness between various trajectories.

We report now a brief summary of the most used clustering techniques in the Lagrangian studies.

5.4.1 A non-hierarchical clustering method

The well known non-hierarchical trajectory clustering method was applied for the first time by

Dorling et al. (1992). The best property of this algorithm is its low requirement for computational

storage (Brankov et al., 1998). The various consecutive steps are as follows:
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1. Choice of a number of "seed" trajectories corresponding to the number of wanted clusters:

the choice is arbitrary (they can even be not real trajectories) but it is better to choose seed-

trajectories well covering the spread of all the real trajectories.

2. Assign each of the real trajectories to that "seed" trajectory which is closest in term of an "a

priori" defined distance (see Jain et al., 1996 and section 5.5 for the definition of distance

in the phase space). After assignment of all the real trajectories, recalculate the "seed" or

"average" trajectory in each cluster from its members (now it is highly probable that this

"average" trajectory does not correspond to a real trajectory).

3. Recalculation of cluster mean trajectories may now result in some real trajectories being in

the wrong cluster in terms of their distance from cluster means. Check each real trajectory

in this regard and recalculate the cluster means again after completing the check. Several

iterative "passes" through all the trajectories may be necessary, each time recalculating the

cluster means at the end of each pass, before all real trajectories are correctly assigned.

All the procedure can be repeated for various numbers of searched clusters. The choice of the

optimal number of cluster can then be fixed by the analysis fo the RMSD (Bertò et al., 2004).

5.4.2 The hierarchical clustering methods

The hierarchical clustering methods are well known algorithms. These "bottom-up" procedures

develop following the steps reported below:

1. At the beginning, all the single trajectories are considered clusters, there are no "seed tra-

jectories".

2. The couple of trajectories displaying the minimum distance are aggregated, i.e. are gathered

into one cluster.

3. The coordinates of the mean trajectory, representing the cluster, are calculated as the average

of the corresponding coordinates representing the two trajectories.

4. The distances between all possible couples of trajectories and between each trajectory and

the cluster are evaluated. In fact various hierarchical clustering methods differ for the way

they compute the distance between the single trajectory and a cluster of more trajectories

(or later between two clusters).

� In the case of the "centroid" method the distance is the distance between the two mean

cluster trajectories (or centroids).
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� In the case of the "complete-linkage" method the maximum distance is retained of the

computed distances between all the possible couples of trajectories belonging to the

two clusters.
� In the case of the "single-linkage" method the minimum distance is retained of the

computed distances between all the possible couples of trajectories belonging to the

two clusters.
� In the case of the "average-linkage" method the distance is the average of the distances

between all the possible couples of trajectories belonging to the two clusters (Kalkstein

et al., 1987; Cape et al., 2000; Lee and Merrill, 2002). It has been shown that "average-

linkage" method is superior to both the single and complete linkage as it possesses the

unique capability to minimize within-cluster variance and maximize between-cluster

variance (Boyce, 1969).
� The Ward’s method (Moody and Galloway, 1988; Moody et al., 1991; Harris et al.,

1992; Lee and Merrill, 1994; Lin et al., 2001; Wyputta and Grieger, 1999) slightly

differs from the others. It gathers together just the two elements so that the new within-

cluster variance is minimized.

5. Following the chosen definition of distance, the two closest elements (trajectories or clus-

ters) are gathered into a new, single cluster. The procedure is then iterated up to retain only

one cluster: the clustering procedure agglomerates trajectories in a progressive way building

a dendrogram.

5.4.3 Other clustering methods

Some authors use alternative clustering methods. Some of them (Frank and Seibert, 2003) found

a sort of optimal combination between the two most commonly used algorithms. Other use com-

pletelly alternative methods such as "heuristic algorithms" (Best and Hege, 2002).

5.4.4 The number of clusters

In all the clustering methods described, there is no intrinsic rule to objectively define the total

number of clusters, or to stop the agglomerative procedure at some point. Intuitively, the optimal

number of cluster should be when the procedure is forced to agglomerate elements displaying very

little "resemblance". A possible criterion to detect this breaking point is given by the the analysis

of the dependence of variance on the number of clusters. The variance within the cluster is defined

as the averaged square distance between each point representing a trajectory in the phase space
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and the center of mass of the cluster. The average of the cluster variances is the Mean Square

Deviation (MSD) and provides a suitable functional test. In order to minimize the variance within

each cluster and to maximize the variance between different clusters, the changes occurring in

the Root Mean Square Deviation (RMSD) can be analysed for various possible final numbers of

clusters in order to detect sudden breaks.

Nevertheless, clustering is a wide branch of scientific research and probably only some classical

approaches have been transferred ed in the meteorological field. For example, Giada and Marsili

(2002) addressed the problem of data clustering by introducing a unsupervised, parameter-free

approach based on maximum likelihood principle. Starting from the observation that data sets

belonging to the same cluster share a common information, they construct an expression for the

likelihood of any possible cluster structure. The likelihood, in turn, depends only on the Pearson’s

coefficient of the data. They discuss clustering algorithms that provide a fast and reliable ap-

proximation to maximum likelihood configurations. In the authors opinion, compared to standard

clustering methods, their approach seems has the following advantages:

1. it is parameter free

2. the number of clusters need not be fixed in advance

3. the interpretation of the results is transparent.

If this method was really so powerful it could be certainly introduced for trajectory clustering.

5.5 Application of the clustering techniques to the present work

Each trajectory can be defined by the positions of the air parcel at them = 121 time steps if the

5-day back-trajectories are built by the Lagrangian model output every 1 hour. So each trajectory

is defined by 3 � m = 363 coordinates. In the following xi � k, yi � k, zi � k are the coordinates of the i-th

trajectory (i � 1 � � � � � NT ) at the k-th time step (k � 1 � � � � � M) where NT = 460. The time step k � 1

is the time of arrival of trajectory over Trentino, the k � th time step denotes tk � � � k � 1 � hours

before the time of arrival and hence k � 121 corresponds to t121 � � 120 hours (5 days) before the

time of arrival.

However, at each time step and for each trajectory, further quantities can be added to the set of

variables needed to identify the state of the air parcel: these may be either dynamic and thermo-

dynamic variables (such as the specific humidity qi 	 k, the relative humidity RHi 	 k, the equivalent

potential temperature θei 	 k, the potential vorticity PVi 	 k) or their rate of change. These additional

coordinates will allow to identify more precisely the state of the air parcel and to distinguish be-

tween spatial trajectories lying close but displaying different physical properties (e.g. moisture
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content).

This implies the adoption of a suitable trajectory phase space for clustering where each point rep-

resents one whole trajectory: accordingly its coordinates will be, besides spatial coordinates of

points reached at various time step, the values of additional dynamic and thermodynamic vari-

ables at the same times. In principle this would imply the use of a hyperspace where all relevant

quantities at all time steps provide the component of the vector identifying each trajectory. This

would however produce relatively cumbersome objects and many variables that do not play any ef-

fective role might be included. The choice of the most appropriate coordinate subset for the phase

space is a key issue in order to capture the conserved quantities relevant to the event: 2 possible

ensembles of parameters have been tested and reported in the following subsections. Once trajec-

tories have been reduced to points in the phase space, the "distance" between two trajectories is

easily the euclidean distance between the respective points in the chosen phase space. Afterwards

various hierarchical agglomerative clustering techniques can be adopted (Jain et al., 1996; Dorling

and Davies, 1995; Brankov et al., 1998) to gather the "trajectory points" of the phase space in a

small number of trajectory clusters. In the present work the Average-Linkage Clustering algorithm

(Cape et al., 2000) has been selected due to its satisfactory performances for the purposes of the

present study.

At the end of the agglomerative procedure only significant clusters, including more than 2 % of

the total trajectory number, have been retained in order to avoid outliers.

5.5.1 Use of specific humidity to define the phase space

It has been anticipated that it might not be necessary to take into account the values of the various

parameters of trajectories at all time steps. Aim of the present work is to find a relationship

between high evaporation occurring where moist air masses originate and strong precipitation

occurring in the ending areas. As a consequence, spatial coordinates of the physical space and the

other physical variables at the intermediate trajectory stage (from 60h to 12h before the ending

time) are not included as coordinates of the phase space used for the clustering.

Furthermore, since each quantity enters as a component with its own dimension, in order to make

the ranges of all the variables comparable, suitable normalization has to be introduced. This is

achieved by subtracting from each variable ξi of the phase space its average value

ξ �

∑NTi � 1 ξi
NT
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and normalizing with its variance

σξ � ∑NTi � 1 � ξi � ξ � 2
NT � 1 �

On the basis of the above reasoning, the adopted multidimensional phase space will include as

coordinates the following quantities:

� the specific humidity change in the 12 hours before trajectory arrival at target point (δq i �
qi � 13 � qi � 1),

� the trajectory height at the 3 time steps over the last 6-hours time lags (zi � 1, zi � 7, zi � 13),
� the trajectory positions (latitude, longitude and height) at the 6 time steps over the beginning
12-hour time lags (xi � 121, yi � 121, zi � 121, xi � 109, yi � 109, zi � 109, xi � 97, yi � 97, zi � 97, xi � 85, yi � 85, zi � 85, xi � 73,
yi � 73, zi � 73, xi � 61, yi � 61, zi � 61),

resulting in a total number of 22 degrees of freedom.

So the hypervector in the phase space will be as follows:

Ξ � �
δqi � δq

σδq
	 zi � 1 � z1

σz1
	 zi � 7 � z7

σz7
	 zi � 13 � z13

σz13
	 xi � 61 � x61

σx61
	 yi � 61 � y61

σy61
	 zi � 61 � z61

σz61
	

xi � 73 � x73
σx73

	 yi � 73 � y73
σy73

	 zi � 73 � z73
σz73

	 xi � 85 � x85
σx85

	 yi � 85 � y85
σy85

	 zi � 85 � z85
σz85

	
xi � 97 � x97

σx97
	 yi � 97 � y97

σy97
	 zi � 97 � z97

σz97
	 xi � 109 � x109

σx109
	 yi � 109 � y109

σy109
	 zi � 109 � z109

σz109
	

xi � 121 � x121
σx121

	 yi � 121 � y121
σy121

	 zi � 121 � z121
σz121 


Beside the choice of the most suitable phase space, clustering procedure leaves the possibility

of weighing some coordinates of the phase space with an amplification or reduction factor to

give them higher or lower importance in the clustering algorithm. For example, if most of the

variance of the trajectory ensemble resides in the geographical position of trajectories, then all

the coordinates of the phase space (except the first one) can be multiplied by a reduction factor to

enhance the information deriving from the specific humidity variations. Yet, the chosen weighing

should be tested and explained on a physical basis, so it has not been adopted in the present work.

5.5.2 A two step agglomerative algorithm

The previous choice was innovative and physically based since it aimed at outlining possible links

between the intensity of precipitation along trajectories before arriving at the target area and the
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water vapour source regions contributing to enrich trajectories (Bertò et al., 2004). Doubt still

remained however that we were sometimes forcing trajectories to gather together by the uncon-

trolled mixing of two types of criteria: the geographical distance and the different size of specific

humidity variations. To rationalize the procedure, a two step agglomerative algorithm has been

adjusted:

1. In the first step the adopted multidimensional phase space includes as coordinates only geo-

graphical quantities: the trajectory height at the 3 time steps over the last 6-hours time lags

zi � 1, zi � 7, zi � 13 and the trajectory positions (latitude, longitude and height) at the 6 time steps

over the beginning 12-hour time lags xi � 121, yi � 121, zi � 121, xi � 109, yi � 109, zi � 109, xi � 97, yi � 97, zi � 97,

xi � 85, yi � 85, zi � 85, xi � 73, yi � 73, zi � 73, xi � 61, yi � 61, zi � 61, resulting in a total number of 21 degrees

of freedom. In this way NT trajectories are gathered together in NC1 on the basis of purely

"geographical" criteria.

2. In the second step the clustering algorithm is applied to each set of trajectories belonging

to each one of the NC1 main clusters obtained in the first step. Now the adopted phase

space includes only one coordinate: the specific humidity change in the 12 hours before

trajectory arrival at target point δqi � qi � 13 � qi � 1. So the second step is made to select

subclusters, inside a trajectory cluster originating over a specific region, characterized by

different humidity variations before arriving over the target area. The number of subclusters

selected inside one of the main clusters depends on the population of the main cluster itself

through a simple algebric expression: such strategy has been chosen to avoid to compute

subclusters inside already small main clusters. The total number of obtained subclusters

will be NC2.

Hereafter trajectory clustering performed in the above phase space will be called "final geographi-

cal clustering", while the procedure of Bertò et al. (2004) will be referred to as "direct clustering".

Another strategy for the second step of the geographical approach is to adopt a phase space includ-

ing only the specific humidity variation along trajectories in their first 4 days δq i � qi � 121 � qi � 25

as coordinate. This algorithm, herafter called "initial geographical clustering", aims to point out

various sources of water vapour along trajectories without looking at the ending precipitation.

5.6 Clustering: an example

As an example of the application of the "direct clustering method" clusters of trajectories arriving

over the target area on the 4th November 1966 00 UTC are reported in Fig. 5.3. The number of

trajectories belonging to each cluster is reported in the figure.
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The same analysis could be repeated for each ensemble of computed trajectories arriving over the

Figure 5.3: Cluster of trajectories arriving over Trentino at 00 UTC of 04/11/1966. Every curve
is the average, in the physical space, of all trajectories belonging to that cluster.The
average position every 6 hours is marked by a small circle, the position every 24 hours
by a big one. The number of trajectories for each cluster is indicated in the figure.

target area every 3 hours during the entire duration of the event (e.g. from 03 November 00 UTC

to 05 November 00 UTC for the flood event of 1966). This approach would generate too many

figures and tables, which result to be dispersive. Nevertheless the analysis of cluster scenarios for

ensembles of trajectories arriving over the target area every 12 or even every 24 hours would lead

to loss or to misunderstand the evolution of the precipitation event.

So trajectory clustering analysis can be performed simultaneously on the all the ensembles of

trajectories computed for the considered event. This is done by introducing the time as a further

coordinate of the clustering phase space to avoid to gather in one cluster similar trajectories ending

over Trentino at different times.

The optimal time window to perform the cluster analysis is not even the entire event. This approach

would lead to catch all the typical types of air masses occuring during a whole cyclonic event

(trajectories belonging to the "warm conveyor belt", other to the "cold conveyor belt" and other

to the "dry intrusion"), but it would become hard to characterize these types of clusters without

distinguishing smaller ensembles of trajectories inside them. So events lasting two or three days
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have been broken a priori in more phases: the cluster analysis has been performed for each of the

phases.

In Fig. 5.4 trajectory clusters are reported computed for the central phase of the 1966 precipitation

event. In the subsequent figure (Fig. 5.5) there are all the trajectories belonging to each cluster:

Figure 5.4: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to
04/11/66 12 UTC. Every curve is the average, in the physical space, of all trajectories
belonging to that cluster.The average position every 1 hour is marked by a small circle,
the position every 24 hours by a big one. The number of trajectories for each cluster is
indicated.

this helps to appreciate both the power and the limits of a procedure trying to summarize all the

information in a few representative paths. For example, it is not directly clear from Fig. 5.5 that

some trajectories originate over Germany (orange cluster) or over the inland areas of Lybia (violet

and green cluster) and that some clusters are not compact around their mean trajectory (green

cluster).

In the next chapter as well as in the Appendix the following variables are plotted, beside the

spatial projection of the average cluster trajectories:

1. for each cluster the evolution of its average height over the sea level as well as the average

profile of the orography underneath its trajectories (see for example Fig. 5.6). In Fig. 5.7
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Figure 5.5: Individual trajectories arriving over Trentino in the period from 03/11/66 21 UTC to
04/11/66 12 UTC. They are marked by different colors according to Fig. 5.4. The
average profile of the orography underneath each cluster trajectory is also reported.

an exemplified representation of the orography profile underneath a generic trajectory is

plotted. Note that, at each time step, the average of a variable is computed as the average of

the values of that variable along the trajectories belonging to the considered cluster. So, the

average orography profile results to be very smoothed for densely populated clusters, while

it is steeper for scarcely populated clusters. Similarly, the more compact is the airstream,

the less smoothed is the average orography profile beneath.
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Figure 5.6: Height of trajectory clusters arriving over Trentino in the period from 03/11/66 21 UTC
to 04/11/66 12 UTC. The height is marked by different colors and circles of different
size according to Fig. 5.4

Figure 5.7: Exemplified representation of the orography profile underneath a generic trajectory.
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2. for each cluster the evolution of its average water content (see for example Fig. 5.8) As

specified in the Figure caption the sum of the specific humidity with the concentration of

liquid and solid water parcels is plotted. This type of plot is almost equal to the plot of the

specific humidity alone, since the concentration of liquid and solid water parcels is typically

an order of magnitute less than the concentration of water vapour (Fig. 5.9).

3. for each cluster the evolution of its average relative humidity, potential vorticity, potential

temperature and equivalent potential temperature (see for example Fig. 5.10)
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Figure 5.8: Specific humidity along trajectory clusters arriving over Trentino in the period from
03/11/66 21 UTC to 04/11/66 12 UTC. Colors and circles of different size have been
used according to Fig. 5.4
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Figure 5.9: Concentration of liquid air parcels along trajectory clusters arriving over Trentino in
the period from 03/11/66 21 UTC to 04/11/66 12 UTC. Colors and circles of different
size have been used according to Fig. 5.4
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Figure 5.10: Equivalent potential temperature along trajectory clusters arriving over Trentino in
the period from 03/11/66 21 UTC to 04/11/66 12 UTC. Colors and circles of different
size have been used according to Fig. 5.4
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Another possibility offered by the cluster analysis is to perform the budget (see also the previ-

ous chapter), using the average cluster trajectories instead of the whole set of trajectories (see Tab.

5.1 and Tab. 5.1 and compare them with Tab. 4.1 and Tab. 4.2). For example, note that the number

of trajectories flowing over area 4 is largely overestimated using the "direct clustering algorithm"

and that the average specific humidity variation over area 6 appears to be positive while it should

be negative and so on. The analysis applied on the trajectory clusters has shorter computational

times but introduces large approximations in the budget reconstruction. Thus it is useful: a) to

compare various clustering algorithms: the best method should be very faightful to the budget

computed starting from the ensemble of trajectories; b) to have an idea whether the computed

clusters are representative of the whole set of trajectories or not. A comparison between tables and

figures outlines that the procedure is very sensitive to the distance between cluster trajectories and

the boundaries of various areas. For example in the event of 1966 (Figure 5.4) the orange cluster

is inside area 4 only in the first time step (5 days before the ending time): if it had originated only

slightly to the East, this would have drastically changed the analysis of that area because of the

large population of the cluster.

Nk zm[dam] qm[ gkg ] PVm[PVU] θm[K] θem[K] hm[dam] t[h]
1 2760 351 (127) 4.27 (1.63) 0.76 (0.08) 303.9 (6.1) 317.0 (1.8) 81 (9) 1 (2
2 2697 252 (151) 5.53 (1.85) 0.61 (0.25) 300.3 (6.5) 316.9 (2.1) 32 (16) 2 (9
3 2760 138 (70) 7.19 (0.94) 0.43 (0.17) 297.2 (3.2) 318.4 (3.3) 13 (3) 12 (6
4 2377 205 (43) 3.70 (0.77) 0.36 (0.07) 294.1 (1.9) 305.1 (1.9) 38 (23) 22 (44
5 367 198 (34) 4.52 (0.69) 0.46 (0.10) 299.9 (5.1) 313.7 (6.9) 21 (9) 7 (90
6 2618 150 (48) 5.30 (1.38) 0.25 (0.06) 295.3 (4.0) 311.0 (6.2) 27 (12) 21 (33
7 2393 100 (26) 6.49 (1.03) 0.18 (0.08) 295.0 (1.7) 314.1 (4.1) 15 (5) 32 (14
8 73 225 (156) 3.04 (1.65) 0.50 (0.07) 291.9 (5.7) 300.9 (5.2) 37 (16) 27 (69
9 10 738 (439) 0.09 (1.63) 0.61 (0.00) 307.9 (17.9) 308.3 (13.1) 26 (23) 13 (99
10 0 0 (0) 0.00 (0.00) 0.00 (0.00) 0.0 (0.0) 0.0 (0.0) 0 (0) 0 (0
11 73 282 (226) 1.91 (0.97) 0.61 (0.08) 292.0 (7.8) 297.7 (5.2) 14 (9) 40 (61
12 383 130 (28) 5.44 (1.01) 0.20 (0.07) 303.0 (2.3) 319.6 (0.4) 39 (6) 77 (37

Table 5.1: The same quantities shown in Tab.4.1 are reported for the event of November 1966. In the present table data
have been computed starting from the cluster trajectories (obtained using the "direct clustering" algorithm)
so as all trajectories gathered together into one cluster had the average position and the average properties
of the cluster.
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δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 58 (27) -1.04 (0.60) 0.05 (0.10) 2.18 (0.95) -0.70 (0.75) 43 (16) -0.057
2 33 (41) -0.37 (0.47) 0.04 (0.10) 1.06 (0.83) 0.02 (0.61) 17 (11) -0.021
3 187 (238) -2.04 (2.26) 0.44 (0.14) 5.06 (4.65) -0.52 (2.26) 20 (14) -0.093
4 -31 (32) 0.91 (0.47) -0.06 (0.07) -0.50 (1.81) 2.05 (2.05) -13 (14) 0.041
5 -10 (13) 0.13 (0.17) -0.16 (0.16) -0.17 (0.71) 0.20 (0.27) 8 (33) 0.001
6 -24 (44) 0.48 (0.72) -0.04 (0.13) 0.44 (1.05) 1.85 (2.69) -8 (9) 0.036
7 -47 (64) 1.78 (1.30) 0.01 (0.10) 0.27 (1.13) 5.32 (3.37) -5 (9) 0.122
8 -44 (84) 0.55 (0.19) -0.19 (0.08) 0.91 (1.27) 2.56 (1.83) 40 (55) 0.001
9 -74 (82) 0.04 (0.08) -0.13 (0.21) -2.55 (0.40) -2.39 (0.54) 32 (41) 0.000
10 0 (0) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0 (0) 0.000
11 -97 (102) 1.70 (1.32) -0.04 (0.01) -1.89 (1.19) 3.00 (2.59) -34 (37) 0.002
12 -43 (56) 0.04 (0.56) -0.21 (0.14) 2.42 (0.92) 2.74 (2.32) 5 (9) 0.000

Table 5.2: The same quantities shown in Tab.4.2 are reported for the event of November 1966. In the present table data
have been computed starting from the cluster trajectories (obtained using the "direct clustering" algorithm)
so as all trajectories gathered together into one cluster had the average position and the average properties
of the cluster.

119



120



6 Discussion of results

In the present, chapter the results are discussed, based on both the budget and the cluster analysis.

A conceptual model describing the airstreams flowing over the Mediterranean basin during heavy

precipitation events is proposed. This provides a preliminary basis for the classification of mete-

orological situations producing intense precipitation events over the Alps. Finally a preliminary

test of the sensitivity of the trajectory method to the resolution of input data is reported.

6.1 Detailed Lagrangian analysis of the three case studies

The synoptic scenarios described in chapter 4 for each one of the 3 considered events and the

relative budget studies can be read in the light of the clustering analysis. Furthermore, it is possible

to recognize the most considerable components of the airflows originating over various areas and

characterized by various water vapour contents.

6.1.1 Event of November 2000

In the this section all the figures and the tables obtained from cluster analysis of the event of

November 2000 will be ispected. Analysis of figures 6.1, 6.2and 6.3 obtained from the "initial

geographical clustering" method indicates that:

� There are two predominant air streams: the first one (in light blue color) comes from the Sa-

hara desert, the second one (in green color) flows around a restricted area over the Mediter-

ranean Sea. They start from different regions but from the same height above sea level

(2km). In the last 2 days, the light blue cluster rises up to 2 km higher than the green one.

� The two main clusters experience a first strong ascent a day before the arrival: the light blue

cluster over Area 6 (i.e. in the north of Algeria before and while crossing the Atlas), the

green cluster over the Area 3 (i.e over Sardinia). Whilst the first rising is undoubtly due to

the rising motion in the cyclone (see Fig. 6.2), in the last 6 hours before the end time "all the
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clusters" are also subjected to the orographic lifting (see the terrain profile beneath cluster

trajectories).

� Both clusters have an initial specific humidity of 3.5 g/kg. Then they gain humidity just in

the 2 days before experiencing the strong cyclonic ascent: note that the maximum in specific

humidity occurs halfway through the ascent.
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Figure 6.1: Clusters of trajectories arriving over Trentino in the period from 16/11/00 18 UTC to 17/11/00 18 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first couple of
plots each curve is the average, in the physical space, of all trajectories belonging to that cluster. The
average position every hour is marked by a small circle, the position every 24 hours by a big one. The
number of trajectories for each cluster is reported. In the second and in the third couple of plots there are
the average height of the clusters above the surface and the average height above the mean sea level of
the cluster and of the terrain beneath them respectively.
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Figure 6.2: Clusters of trajectories arriving over Trentino in the period from 16/11/00 18 UTC to 17/11/00 18 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first, in the
second and in the third couple of plots there are the average water concentration (q � wliq � wice), the
average relative humidity (RHm), and the average potential vorticity (PVm) of the clusters respectively.
The clusters have been marked by different colors and circles of different size according to figure 6.1.
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Figure 6.3: Clusters of trajectories arriving over Trentino in the period from 16/11/00 18 UTC to 17/11/00 18 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first and in the
second couple of plots there are the average potential temperature (θ) and the average equivalent potential
temperature (θ) of the clusters respectively. The clusters have been marked by different colors and circles
of different size according to figure 6.1.
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By looking at the synoptic charts from the Met Office (see Fig. 4.9), it is possible to see

a cold front approaching the Mediterranean Sea between the 14th and 15th of November. The

meridional tail of this cold front favoured the development of a surface weak low near Gibraltar

(15th November 00 UTC). Subsequently the lowmoved eastward north of Algeria (16th November

00 UTC) and then eastward and northward toward Sardinia (17th November 00 UTC) and the

Gulf of Genoa (18th November 00 UTC). Because of the cyclonic development the cold front

manifested peculiar properties: north of the cyclonic center it changed to a warm front, whereas

in its meridional part it seemed to remain stationary, sliding north-eastward along its axis.

The above synoptic evolution explains the observed "cyclonic" rising of the light blue cluster: it

moves inside the warm conveyor belt and is slightly enriched in humidity (probably deriving from

the evaporation following intense precipitations occurred over the north of Algeria). After that, it

contributes to the precipitation over the coasts and over the mountains of Algeria. The green cluster

starts eastward of the developing low center, so it gains humidity because of evaporation from the

sea (it is flowing in the ABL) or because of re-evaporation of precipitation falling from higher

levels. It is reasonable to guess that the air stream represented by the light blue cluster, flowing 2

km above the green cluster and losing humidity, is a persistent feature over North Algeria for 24 -

48 hours. In the last day, the green cluster, captured by the warm conveyor belt, moves northward

at low levels and is associated with precipitation, first over Sardinia, later over northern Italy.

By looking at figures 6.2 and 6.3, it possible to draw out further observations:

� The values of relative humidity for the described air streams are far from saturation: 50-60%

one day before the arrival, 80-90% at the arrival. This apparently anomalous feature can be

explained in different ways:

1. The relative humidity of a populated cluster is the average of the RH values of many

trajectories. Far away from the target area, the cluster is heterogeneous: since it is

reasonable to expect that the saturation conditions occur only in restricted areas, the

mean values of RH are never close to 100%. Conversely, this is possible over the target

area, i.e. at the ending time of trajectories.

2. If a precipitation area is characterized by embedded convection, it is possible to have

a strong heterogeneity in precipitation as well as in relative humidity fields. Mean

values report precipitation as well as absence of saturation.

In this case there is probably the contribution of both the effects over the north of Algeria

(with frontal convection).

� Precipitation is accompanied by diabatic PV production (see green and light blue cluster in
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figure 6.2)

� In general, potential temperature seems to decrease when a descent of clusters is observed

(the first three days), whereas it increases with precipitation because of the released latent

heat. Morover, the initial height and the specific humidity being equal, the light blue cluster

coming from the Sahara is warmer than the green one (which suggests stable atmosphere).

� The figure of equivalent potential temperature outlines that the increase of specific humidity

of the green cluster in the first three days is due to evaporation (θ is constant, while θe
increases), but the increase in the fourth day is due to re-evaporation of precipitating droplets

since θe is constant, q increases and θ decreases (vaporization latent heat). It is hard to
explain the decrease of equivalent potential temperature of the light blue cluster during

precipitation. It could be possible to explain that effect with embedded convection (there is

a net transfer of energy from the higher levels of atmosphere to the lower levels). Another

possibility is that a decrease of θe (expressed by the classical formula) is due to the sensible
heat transferred to the droplets during condensation: generally this effect is quite small if

precipitation is not very large.

The other clusters are not so populated. Still, it is interesting to note the followings:

� The blue cluster is related to a dry stratospheric intrusion following the cold front

� The violet cluster is a dry air stream flowing over Area 7 and 6 for 4 days. It starts at 3 km

of height but descends slowly in the boundary layer where it gains humidity by evaporation

(over the coasts of Lybia). In the last day it experiences a further increment in specific

humidity content and a decrease in the potential temperature: this suggest that at the lowest

levels of troposphere there is re-evaporation of precipitation.

Another possibility of clustering is the "final geographical clustering". Figure 6.1 shows that some

clusters are equivalent to the clusters obtained from the previous "initial geographical clustering".

They are the clusters which are born from the first "geographical phase" of the clustering procedure

and that are not affected by a sub-division in the second "humidity phase". Moreover it is possible

to note that the new violet cluster is very similar to the green one. In the new analysis, a cluster

starting from Lybia does not emerge, but two new clusters appear (the green one and the magenta

one) starting from the west of the Mediterranean Sea. They were moist and cold air masses at low

levels affected by the passage of the cold front: quickly advected at medium levels they produced

precipitation. Their "zig-zag" movement is symptomatic of both their small population and of their

passage near the center of the low. Finally it is clear from figure 6.2 how the clustering method
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works: the new clusters differ for specific humidity variations in the first 2-3 days, the cluster of

the previous methods for variations in the last 12 hours.

The last clustering method adopted in the present work is the "direct clustering". All the resulting

clusters differs from the clusters of the previous methods, since the phase space for clustering is

different. An unexpected property is the homogeneity of cluster population which gives an equal

importance to trajectories having different courses and different specific humidity contents. Note

that:

� The red and the violet clusters are similar to the clusters outlined by the "initial geographical

clustering method" (the green one and the magenta one in that case): they gather together

trajectories flowing close and around the cyclonic center, forced to a rapid ascent and to

precipitation production. After that they flow in the rear of the front: while the red clus-

ter is very dry, the violet cluster is still sufficiently humid to guarantee condensation after

orographic lifting.

� The green cluster is a bit similar to the light blue one of the previous method: it is very dry

and warm; it gains 1 g/kg of specific humidity over the desert of Sahara (note a through in the

synoptic chart of 16 November), rises uniformely of more than 2 km producing precipitation

over the north of Italy.

� The light blue cluster partially reminds of the violet cluster of the "final geographical clus-

tering method"

� The magenta cluster reminds of the green cluster of the first method and the violet cluster

of the second method

The analysis of trajectory clusters clarifies the dynamical reasons of data reported in budget tables

4.3 and 4.4:

� Air masses flowing over Area 12 and coming from tropical regions are quite dry (the mean

values of q is only 2.81 g/kg for trajectories close to the ABL) and warm. Initial mean

values of θ for cluster green in Fig. 8.3 is 308 K (the lower average value of 302 K over the
whole area is conditioned by cold air masses in the rear of the cold front flowing from the

North toward Morocco and then turning north-eastward). Over Area 12 southerly air masses

increase a lot their water vapour content because of strong evaporation (mean increments of

3.33 � C in θe); a residual contribution from re-evaporation of clouds or precipitation droplets
could justify the negative variations in potential temperature. Cluster trajectories in Figure

8.3 clearly restrict the evaporation area just below the 30 � of latitude and to a temporal

window of 24 hours (on 15th of November).
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� Air masses flowing over area 7 gather the easterly component of air streams from the desert

(light blue cluster in Figure 6.1 ), the originally dry but colder air flow starting in the mid-

dle troposphere over the Central Mediterranean (violet cluster in Figure 8.3) and the low

airstream flowing around anticyclonically over the Gulf of Gabes (Figure6.1). Globally

these air masses are moister (the mean values of q is 4.00 g/kg) and slightly colder. They

receive a lot of water vapour by evaporation and re-evaporation (the second one is probably

more pronounced in the north western corner). It is interesting to note that the values of

δq are smaller in comparison to δQ. The δq value is computed as the average variation of
q along trajectories while flowing over the considered Area: if trajectories cross the Area

more than once (as it happens for Area 7) δq is the average over all trajectories and over all
the times. So if the crossing is short , δq is more underestimated: the same conclusions can
be drawn for computed values of δPV , δθ, δθe, etc.

� Air masses over Areas 5 and 8 are cold and dry since they come from the north of Europe:

because of this they gain a relatively large amount of water vapour over those areas. Over

area 8 water vapour essentially comes from re-evaporation of cloud or precipitation droplets

cumulated in the lower levels after the passage of the cold front.

� Air masses flowing over area 4, related to the passage of the cold front, are moist (4.67 g/kg)

and not very warm. They produce a considerable precipitation marked by the strong ascent,

the increase in potential temperature and the production of PV.

� It is hard to give an interpretation of the mean values of various variables for Area 6 since

it is affected by both evaporation in the southerly part near Area 12 and precipitation at

the boundary with Area 4. Morover, the dynamics of air masses changes because of the

movement of the cold front inside that area. These air masses consist of warm air streams

flowing from the South in the mid troposphere (light blue cluster in Fig 6.1) and lower and

moister air streams ahead of the cold front flowing from the West over the Algerian coasts

and mountains (red and violet clusters).

� Area 3 is crossed by almost all trajectories, which are still moist, but do not release much

precipitation.

Figure 4.10 shows that evaporation estimated by the Lagrangian budget is almost negligible com-

pared to real evaporation.

� Air masses flowing over area 4 and ending over the target area are mostly in the warm side

of the cold front and are affected by cyclonic ascent and precipitation. They cannot take into
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account strong evaporation occurring over the Mediterranean Sea near the coasts of Spain

and France where a post-frontal dry wind blows over the sea surface favouring strong latent

heat fluxes from the earth to the atmosphere.

� Trajectories flowing over area 7 experience the westerly boundary domain inside Area 7,

which is not representative of the whole area (remember that this is the evaporation for time

unit: the total computed evaporation over area 7 is not negligible since trajectories spend a

lot of time over that area)

6.1.2 Event of November 2002

By looking at the synoptic charts from the Deutscher Wetterdienst (see Fig. 4.15) it is clear that

Italy is affected by a series of fronts driven by the deep low Xara centred to the East of Ireland.

The "first cold front" reaches Italy on 22 November, while its southerly tail slides zonally along the

northward slopes of Atlas, without crossing the mountains. Subsequently, Gibraltar, approached

by a "second cold front", is characterized by persistent cyclogenesis. A first low center, "Andrea",

moves toward France on the 24th of November, thus favouring the formation of a warm front

over the Alps on 25 November (Fig. 4.15) which characterizes the "first phase" of the event: 24
November 18 UTC - 25 November 09 UTC. The second low center, "Cornelia", moves toward

Sardinia, hitting Italy on 26 November: the "second phase" of the event covers the period from
25 November 21 UTC to 26 November 12 UTC. On 25-26 November the part of the "second

cold front" to the south of "Cornelia" low center breaks through Morocco, Algeria and Lybia

channelling cold air over the North Africa. This uses up the energy reserves over Sahara resulting

to be the last important autumnal precipitation event over that Mediterranean area.

The deepening of "Cornelia" on the 25th of November 2002 and the contemporary reinforcement

of the high pressure area over the Eastern Mediterranean and over the East of Europe produces a

strong zonal pressure gradient over Libia and the south of Italy (Fig. 4.15). The north of Italy is

affected by a quasi-stationary warm front. Unlike other events (November 1966, November 2000

and the first phase of 2002) on 26 November 00 UTC the warm front is not leant against the Alps,

but it extends north-eastward from the low center to Austria. This implies more marked easterly

flow components in the lower tropospheric layers over the North and Central Italy.

The paragraph reports detailed observations and comments, derived from the cluster analysis of

the "first phase" of the 2002 event (24 November 18 UTC - 25 November 09 UTC), as it has been
done for the event of 2000.
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Figure 6.4: Clusters of trajectories arriving over Trentino in the period from 24/11/02 18 UTC to 25/11/02 09 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first couple of
plots each curve is the average, in the physical space, of all trajectories belonging to that cluster. The
average position every hour is marked by a small circle, the position every 24 hours by a big one. The
number of trajectories for each cluster is reported. In the second and in the third couple of plots there are
the average height of the clusters above the surface and the average height above the mean sea level of
the cluster and of the terrain beneath them respectively.
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Figure 6.5: Clusters of trajectories arriving over Trentino in the period from 24/11/02 18 UTC to 25/11/02 09 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first, in the
second and in the third couple of plots there are the average water concentration (q � wliq � wice), the
average relative humidity (RHm), and the average potential vorticity (PVm) of the clusters respectively.
The clusters have been marked by different colors and circles of different size according to figure 6.4.
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Figure 6.6: Clusters of trajectories arriving over Trentino in the period from 24/11/02 18 UTC to 25/11/02 09 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first and in the
second couple of plots there are the average potential temperature (θ) and the average equivalent potential
temperature (θ) of the clusters respectively. The clusters have been marked by different colors and circles
of different size according to figure 6.4.
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Figures 6.4, 6.5 and 6.6, stemmed from the application of the "initial geographical clustering",

suggest that the first phase of 2002 precipitation event is characterized by an intense zonal flow

from the Atlantic Ocean to the Mediterranean basin (air parcels move quickly from West to East).

Inside the zonal flow three main airstreams can be identified: an upper level jet (the red and dark

blue clusters) originating in the West Atlantic Ocean and flowing at a mean velocity of 40 m/s; a

lower level airstream (the green and violet clusters) originating in the East Atlantic between the

Azores Islands and Morocco, crossing the Atlas, bending to the north over Tunisia and flowing

over the Tyrrhenian Sea; an airstream (the light blue cluster) originating over the coast of Morocco,

flowing at first south-east of the Atlas chain, then crossing the north of Algeria and Sardinia. The

three airflows have about the same trajectory population (one third of the total number), but they

are characterized by different features:

(a) The upper level airstream flows at almost constant height, without being affected by oro-

graphic perturbation introduced by the Atlas and the Alps. It does not contribute to precipita-

tion because of the low values of relative humidity.

(b) The airstream flowing at the lower levels (green and violet clusters) greatly contributes to pre-

cipitation over the Alps. By comparing the position of the air parcels along this airstream

with the position of the "first cold front" on 22 November 00 UTC, it is clear that over the

southern side of the Atlas the air masses are flowing ahead, but on the fringes of the front. In

fact, during this phase, their motion and their feature do not resemble the typical feature of

the WCB. Subsequently, on 23 November, a zonal pressure gradient arises over the Central

Mediterranean area. The airmasses flow at low levels (1km) over Tunisia which, on the con-

trary, has been directly affected by the previous cold front (on 22 November) and where the

specific humidity of trajectories is increased.

(c) The airstream originating east of Morocco flows at medium levels and has rather low RH

values. These are explained by the high values of potential temperature (310 K) and the

middle values of specific humidity (2.5 g/kg). Nevertheless, the strong ending ascent during

the last day brings the air masses to saturation, thus contributing to precipitation.

On 25 November the WCB over Italy, occurring ahead of the "second cold front" and delimited by

the warm front over the Alps, is formed by two airstreams, the moist low level airstream described

above (green and violet clusters) and the light blue cluster. In fact, by comparing trajectories of

the higher clusters (red and the dark blue) with the position of the cold front system indicates that

these clusters represent cold air masses flowing behind the cold front (which explains their partial

descent).
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The surface pressure chart valid on 25 November 2002 00 UTC (Fig. 4.15) indicates that there

is a sort of double cold front over the Mediterranean Sea. The westerly front is the real surface

cold front, the other one is not on the surface but at a middle altitude in the troposphere (verifiable

by observing cross section analysis -not reported here-). Such sort of upper level front (Brown-

ing, 1990 for further details) develops as an upper level cold intrusion (the red cluster in such case)

breaks through the warmer air ahead of the surface front (the light blue cluster above and the green

one below) . In fact light blue air masses are potentially warmer (see Fig. 6.6): 24 hours before the

ending time the red cluster, flowing at a mean height of 3.2 km, has lower θ values with respect to
the light blue cluster (flowing at a mean height of 2.5 km). So the blue trajectories are forced to

rise over the red trajectories during the period from 20 to 10 hours before arrival, after they pass

the Algerian Mediterranean coasts and before they flow over the Gulf of Genoa (essentially over

macroarea 4), reaching saturation. In the last 20 hours, the red air masses represent a dry layer

between 2 precipitating airstreams.

Note that the light blue trajectories register a clear increment in specific humidity although they

experience strong vertical lifting over there; moreover they are characterized by a mean decrease

in θ and a mean increment of 0.61 K in θe. This is explained by the development of convec-
tive conditions, which determine a net exchange of water vapour with the lower airstreams. A

further contribution to the increase of moisture along the light blue trajectories (over area 4) is

re-evaporation of the precipitation falling from higher layers.

Using other clustering methods, similar results and conclusions have been obtained (results are

reported in the Appendix).

The mean values of various variables obtained from the budget analysis (Tab. 4.5 and 4.6) show the

properties of trajectories flowing over various macroareas, which help us to define the aforemen-

tioned scenario of the trajectory features. First of all, it is clear that, in this case, a few macroareas

are crossed by trajectories: in fact they follow a narrow route starting from the Atlantic, flowing

over Gibraltar, northern Africa, to finally bend northward toward the Alps. Less than a quarter of

the total number of trajectories flows over Area 7 (mostly over its north-westerly corner) and even

less over Area 9. Nevertheless, area 7 is characterized by strong evaporation. Trajectories flowing

in the ABL, whose mean altitude is less than 1 km, have strong specific humidity increments as

well as marked positive variations in the equivalent potential temperature.

The 1022 trajectories flowing over Area 11 belong to the red and dark blue clusters in Fig. 6.4.

Over area 11, these trajectories have been previously involved in a cyclonic event, and rise from

low to high levels, thus yielding high rainfall rate. This explains the high equivalent potential

temperature values for the high level trajectories.

By contrast airstreams flowing over Area 12 (the light blue cluster in Fig. 6.4) are very warm and
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dry. In fact, these trajectories originate as already warm air parcels over the Canary Islands (Area

5) at an elevation of 3.5 km and then they slowly descend to an height of 2 km over Morocco

without gaining any specific humidity increments.

Finally, trajectories flowing over area 4 have high specific humidity increments because of con-

vection along the cold front (see above).

Results are now discussed from the cluster analysis of the "second phase" of the 2002 event
from 25 November 21 UTC to 26 November 12 UTC.
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Figure 6.7: Clusters of trajectories arriving over Trentino in the period from 25/11/02 21 UTC to 26/11/02 15 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first couple of
plots each curve is the average, in the physical space, of all trajectories belonging to that cluster. The
average position every hour is marked by a small circle, the position every 24 hours by a big one. The
number of trajectories for each cluster is reported. In the second and in the third couple of plots there are
the average height of the clusters above the surface and the average height above the mean sea level of
the cluster and of the terrain beneath them respectively.
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Figure 6.8: Clusters of trajectories arriving over Trentino in the period from 25/11/02 21 UTC to 26/11/02 15 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first, in the
second and in the third couple of plots there are the average water concentration (q � wliq � wice), the
average relative humidity (RHm), and the average potential vorticity (PVm) of the clusters respectively.
The clusters have been marked by different colors and circles of different size according to figure 6.7.
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Figure 6.9: Clusters of trajectories arriving over Trentino in the period from 25/11/02 21 UTC to 26/11/02 15 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first and in the
second couple of plots there are the average potential temperature (θ) and the average equivalent potential
temperature (θ) of the clusters respectively. The clusters have been marked by different colors and circles
of different size according to figure 6.7.
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By analysing trajectory clusters obtained through the "initial geographical clustering" methods

(Fig. 6.7, 6.8 and 6.9) it is possible to derive the following considerations:

1. All the air masses arriving over Trentino in the time lag between 25th November 21 UTC and

26th November 12 UTC belong to the WCB ahead of the cold front progressively moving

from the area of Spain andMorocco to the north of Africa and to the Central Mediterranenan

Sea.

2. The air masses can be classified into 3 different air streams:

(a) Upper level airmasses (the dark blue and the red clusters) originating respectively over

the western Atlantic Ocean and over the western coast of Africa (near Capo Verde and

Senegal), flowing at a mean altitude of 3-4 km. The dark blue trajectories flow at the

westernmost boundary of the cold front on the 23 November 2002; during the following

day they descend from 4.5 km of height to 2.5 km crossing the Balearic Islands on 24th

November; finally, they travel over the Atlas and are driven toward Italy always close

to the surface cold front. The red trajectories represent the upper part of the warm con-

veyor belt, which flows less close to the cold front. Because of that they do not show

any altimetric descent in the previous days.

To sum up, the upper level trajectories have the typical features of the W1 warm con-

veyor belt (see section 5.3).

(b) Middle level airmasses (the light blue and violet clusters) originating over a large area

covering Mauritania and Mali. The light blue cluster flows quite low in the first 3-4

days (1.1 km), but it is rapidly lifted up in the last day before the arrival (25 November

2002). The violet one, flowing more easterly, is farther from the cold front (see for

example its position on 25 November 00 UTC) and moves at a mean altitude of 2.7 km

without undergoing strong final cyclonic ascent.

(c) Low level airmasses (the magenta cluster) originating over the northern part of Algeria,

moving eastward under the weak forcing of the "first cold front" (on 22-23 November,

but without a direct involvement), turning anticyclonically over Lybia (an anticyclone

formed on 24th November) at a height of 0.5 km and finally flowing toward Italy when

the low center "Cornelia" draws on.

3. During the final day all trajectories enter an area of cyclonic ascent (over the north of Al-

geria, Tunisia, the Channel of Sicily and the Tyrrhenian Sea) which is not induced by the

orographic forcing. The effect is stronger and earlier for upper and middle level clusters.

With the exception of the most easterly trajectories the lifting occurs during 2 phases: the

140



6. Discussion of results

ascent is weaker or null in an intermediate time lag (from 15 to 10 hours before the arrival)

which corresponds to the period of maximum increasing in the specific humidity. This hap-

pens in the region between the coasts of Tunisia, Sardinia and Sicily and can be explained

only by a very deep convection occurring in an area where water vapour at the sea surface

is uplifted to 3-4 km of height.

4. Air masses converging over the target area have a high content of specific humidity with

respect to the previous "atlantic phase" and to the event of November 2000. This is due to

the lower trajectories (i.e. the magenta cluster) which are very moist since the beginning

(note that they originate over an area characterized by the passage of the low "Yvonne" on

21 and 22 November 2002) and which gain further humidity from evaporation over the sea.

Moreover the airmasses coming from the south of Algeria are particularly moist (4-5 gkg
�

1)

in comparison with the typical values of specific humidity (2-3 gkg
�

1) registered along

trajectories flowing over the desert. The latter airstream can be classified as a moist tropical

plume originating over the equatorial regions near the ITCZ (section 2.2.2). Nevertheless its

effect is moderate because of the extremely high values of temperature (the relative humidity

is far from saturation). In fact the initial values of potential temperature for the red and light

blue clusters are respectively 313 K and 305 K: higher than the values of θ for the light blue
cluster of the first phase (Fig. 6.6) and for the light blue cluster for the event of November

2000 (Fig. 6.1). The higher moisture of these airmasses results from the values of the

equivalent potential temperature (320-325 K), which are higher by at least 5 degree than in

the other events.

The driest airstreams are the violet cluster originating in the internal regions of the desert

and the dark blue one which is cold and dry.

5. The warm conveyor belt appears to be stable with the exception of the dark blue and of the

light blue clusters which produce conditional instability conditions.

More information can be derived from the "direct clustering" algorithm (Fig. 8.7 and 8.8). First

of all, it is clear that not only the easternmost airstream but some others originate close to the

Atlas chain, move eastward in the first day, rotate slowly anticyclonically undergoing a downward

vertical displacement and finally are rapidly forced to move northward, which partially explains

the higher moisture of this cluster. Tables derived from the budget analysis (Tab. 4.7 and 4.8) help

to focus on the two most important sources of moisture:

1. Area 7, which is crossed by trajectories moving at very low heights;

2. Area 3, where airmasses mostly increase their moisture content by re-evaporation of liquid
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droplets, since θ decreases (-0.97 K) while θe is constant. Moreover note that over this area
trajectories undergo a strong vertical ascent (an average of 700 m).

Viceversa it is also clear from this table that a minor loss of moisture over Area 12 and 6 probably

due to ABL turbulence fluxes, which are enhanced by the intensity of the low level winds, occurs.

6.1.3 Event of November 1966

Figures (Fig. 6.10, 6.11, 6.12) obtained from the "initial geographical clustering" method tell us

that there are three air streams during the central phase of the event:

� a very little populated trajectory cluster (the red one) originating in the West of Ireland 5

days before the ending time;

� another one (dark blue) originating over the Canary Islands;

� the main airstream (96% of all trajectories) converging over Area 7 just one day before the

ending time and then quickly flowing to the North toward Italy.
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Figure 6.10: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to 04/11/66 12 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first couple of
plots each curve is the average, in the physical space, of all trajectories belonging to that cluster. The
average position every hour is marked by a small circle, the position every 24 hours by a big one. The
number of trajectories for each cluster is reported. In the second and in the third couple of plots there
are the average height of the clusters above the surface and the average height above the mean sea level
of the cluster and of the terrain beneath them respectively.
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Figure 6.11: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to 04/11/66 12 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first, in the
second and in the third couple of plots there are the average water concentration (q � wliq � wice), the
average relative humidity (RHm), and the average potential vorticity (PVm) of the clusters respectively.
The clusters have been marked by different colors and circles of different size according to figure 6.10.
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Figure 6.12: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to 04/11/66 12 UTC.
On the left handside there are the clusters obtained from the "final geographical clustering", on the right
handside there are the clusters obtained from the "initial geographical clustering". In the first and in
the second couple of plots there are the average potential temperature (θ) and the average equivalent
potential temperature (θ) of the clusters respectively. The clusters have been marked by different colors
and circles of different size according to figure 6.10.
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All these air masses originate and move at very low levels. One day before the arrival, the

average height of all the clusters is less than 1 km above the surface.

So in the event of November 1966 the portion of the warm conveyor belt producing precipitation

over Trentino is a homogeneous airstream originating in the lowest atmospheric layers over Area

7 between 02 November 21 UTC and 03 November 12 UTC (i.e one day before the phase of

strongest precipitation). This homogeneity is remarked by the variations of various physical and

thermodynamical properties having a similar value along all the trajectory clusters during the last

24-48 hours. By contrast, the surface wind in the previous days (96-48 hours before the ending

time) is so weak that the trajectory airstreams are completely heterogeneous. Because of that it is

possible to affirm that the real origin of the air masses (seen as the origin of the main air stream

with homogeneous features) is over area 7. It would have been the same in the other events if

the target area had been affected only by the lower air masses: the green and violet cluster in

November 2000 (representing the 50% of all trajectories -Fig. 6.1-), the green cluster in the first

phase of November 2002 (the 38% of all trajectories -Fig. 6.4-) and the light blue, magenta and

green clusters in the second phase of November 2002 (the 66% of all trajectories -Fig. 6.4-).

The coherence of the whole precipitating airstream in the event of November 1966 is explained by

the strong and persistent values of the vertical velocity over the north of Italy 6.17 which causes

the whole air volume above the target area to be affected by air masses rising up from the lowest

levels. Note that the lifting seems essentially to be the result of the cyclonic dynamics since the

elevation of the model orography above sea level represents only 14 (for the highest trajectories) or
1
3 (for the lowest trajectories) of the whole trajectory cluster ascent.

Nevertheless two slightly different airflows within the main airstream can be distinguished:

� the airmasses flowing in the easternmost side over Italy (the orange and the magenta clus-

ters): they originate over a vast region between the western Mediterranean Sea, Spain and

France at a height of 2 or 2.5 km above the surface; in the first 3 days they move toward the

central region of Area 7 where they are just above the sea surface (0.5 km); then they bend

to 330 � North and flow rapidly over Sicily, the eastern side of the Tyrrhenian Sea, Central

Italy (Lazio, Umbria) to end over Trentino. The ending ascent of these clusters is moderate

so that their final altitude is 1-2 km above the mountains.

� the airmasses flowing in the westernmost side over Italy close to the cold front (the green

and violet clusters): they originate over a region between Tunisia, the north of Lybia and the

gulf of Gabes at an height of 1.2 km above the surface. In the first four days they move very

slowly south-eastward at the boundary between Area 7 and Area 12 over the coasts of Lybia

remaining almost at the same level; then they are forced to move quickly northward over the

146



6. Discussion of results

Gulf of Gabes, east of Tunisia, west of Sicily, over the central part of the Tyrrhenian Sea,

Tuscany and to finally end over Trentino. This airstream rises in the last 12 hours from 0.2

up to 3-4 km above the surface.

Note that the most easterly clusters start as very dry (2g/kg) and then continuosly gain specific hu-

midity before the last 4-8 hours, particularly over Area 7. The westerly clusters start with higher

moisture content (5g/kg) which increases at a lower rate although the green cluster reaches mean

maximum values of 9 g/kg of specific humidity (11 hours before the arrival).

Looking at figures 6.10 it is clear that trajectories flowing in the lowest warm conveyor belt de-

scribe a corkscrew movement in the last 12-24 hours before the ending time. Air masses flowing

more westerly, close to the approaching cold front (Fig. 6.17) are the first to rise and to move

quickly northward: in fact there are trajectories which cover the largest distances in the last hours.

Air masses flowing on the eastern side are the last to ascend: they do not move exactly northward,

but they have a small westward component and thus they tend to thread beneath the other trajecto-

ries. Their meridional movement is a bit slower since they remain closer to the surface where the

wind speed values are smaller. The corkscrew movement is confirmed by the values of the height

variance computed for trajectories flowing over each one of the 12 macro-areas (Tab. 4.1). The

variance of trajectory altitude over area 1 (1.4 km) is larger than the variance over area 3 (0.8 km)

and even higher than the value for areas 7 and 12 (0.5 km). This simply means that trajectories

over Area 7 represent a thin and extended air volume close to the sea surface, while over Area 1

the same trajectories cover a smaller area but represent a thicker volume.

Further features or difference between trajectories belonging to the mean airstream are emphasized

by the "initial geographical clustering":

� The orange cluster moves from the Atlantic and crosses France, flows to the easternmost

and northern side of the area covered by trajectories one day before ending over the target

area (i.e south-east of Sicily). Because of flowing in the ABL from the beginning it contin-

uosly increases its moisture content. Despite this, at the end it is one of the clusters with

the lowest θe. Moreover it has the lowest θ too although its flowing in the ABL is not at all
adiabatic).

� The violet cluster originates over Pyrenees at a high altitude (3.5 km). Its adiabatic descent

is strong and particularly conspicuous in the third and in the second day before the end when

its specific humidity values rapidly increases.

147



6. Discussion of results

� The magenta cluster originates over the Atlas mountains, at the border between Algeria

and Morocco. It experiences a weaker descent (in particular in the first 2 days) and gains

moisture after several hours. In the last three days it undergoes a weak decrement in θ and
has low values of θe (with respect to the other trajectories).

� The green cluster is peculiar since its trajectory and the strong increment in specific humidity

between 30 October 12 UTC and 31 October 12 UTC over the Gulf of Gabes. Changes in θ
and θe suggest evaporation over the sea or re-evaporation of low level condensed droplets.
A similar behaviour is shown by the light blue cluster.

The "direct clustering" method does not tell us more information than the "ending geographical

clustering" algorithm.

By having a look at the maps derived from ECMWF analysis (Fig. 6.13, 6.14, 6.15, 6.16) valid on

30 and 31 October 1966 (00 UTC and 12 UTC) it is possible to better understand the properties

of the trajectories during their first 2 days. From the geopotential height of the 850 hPa surface it

is clear that a low center is over the north of Italy driving cold and dry air masses from the north

of Europe into the Mediterranean basin through the Rhone Valley. The low level jet accounts for

the enhanced evaporation at the sea surface over the Gulf of Lyons, the southern Tyrrhenian Sea

and the western Gulf of Syrte. A secondary low center briefly developes on the lee-side of the

Atlas and moves eastward towards the Gulf of Syrte, thus favouring a front formation at very low

latitudes (Algeria and Lybia). The strong evaporation and the cyclonic deepening (driving moist

air masses at the mean levels fromMorocco) favours an increment of the specific humidity content

at 950 hPa level.
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Figure 6.13: Geopotential height at 850 hPa, wind field at 850 hPa and at 700 hPa remapped to a resolution of
0 � 16 � � 0 � 16 � starting from ERA40 analyses valid on 30 November 00 UTC (left handside) and 30
November 12 UTC (right handside)
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Figure 6.14: Specific humidity at 950 hPa and at 700 hPa, latent heat fluxes remapped to a resolution of 0 � 16 � � 0 � 16 �

starting from ERA40 analyses valid on 30 November 00 UTC (left handside) and 30 November 12 UTC
(right handside)
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Figure 6.15: Geopotential height at 850 hPa, wind field at 850 hPa and at 700 hPa remapped to a resolution of
0 � 16 � � 0 � 16 � starting from ERA40 analyses valid on 31 November 00 UTC (left handside) and 31
November 12 UTC (right handside)
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Figure 6.16: Specific humidity at 950 hPa and at 700 hPa, latent heat fluxes remapped to a resolution of 0 � 16 � � 0 � 16 �

starting from ERA40 analyses valid on 31 November 00 UTC (left handside) and 31 November 12 UTC
(right handside)
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Figure 6.17: Equivalent potential temperature at 850 hPa and vertical velocity at 700 hPa remapped to a resolution
of 0 � 16 � � 0 � 16 � starting from ERA40 analyses valid on 04 November 00 UTC, 06 UTC and 12 UTC.

153



6. Discussion of results

6.1.4 Some further comments

For all the events, budget tables have been also computed starting from clusters (see Appendix) in

order to estimate:

1. the errors related to the schematization of the real airmass flow with the cluster airstreams:

the better the clustering method is working, the closer are the budget values derived from

clusters to the budget values derived from all trajectories;

2. the best clustering method able to represent synthetically the atmospheric properties.

For example in the case of the second phase of the 2002 event it is possible to observe that:

1. all the methods overestimate the moisture increments over area 3 (see the values of δQTOT
in Tab. 8.29, 8.32, 8.35);

2. the "geographical clustering methods" fail to estimate the evaporation over Area 7 as well

as the loss of specific humidity over Area 6, but the "direct method" yields good results for

both these evaluations;

3. the "direct method" seems to have better performances in the estimation of trajectory height

and specific humidity, while it is weaker in the computation of potential and equivalent

potential temperature of trajectories flowing over a specific region.

In fact, it is not possible to understand what is the best clustering method among the three options

without performing a climatology: a small displacement in the mean cluster trajectory is sufficient

to change the assignment of tens of trajectories and of their properties from a region to another

one. So in the present work the three adopted clustering algorithms have been essentially used to

outline various properties of the airstreams, to have the possibility to argue about the failure of one

of these methods and to retain the one with better performance in each case. For example, for the

flood event of 2002 (2nd phase) it is convenient to chose the "direct clustering method" as the best

one, whereas in the other cases "geographical clustering" is to be preferred.

For each flood event further detailed tables (e.g. Tab. 8.9) have been derived (for further

details see the Appendix). In fact, by looking at the evolution in time of various variables it

appears that they commonly have a slow increasing/decreasing or stationary state in a first longer

phase and a rapid, opposite change in a second shorter phase (illustrated in Fig. 6.11). Actually,

this is particularly true for trajectories coming from the African continent: over there synoptic or

mesoscale precipitation events typical of temperate regions rarely occur; moreover the wind field
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is generally not intense enough for trajectories to cross the desert area of Africa during a period

of 5 days. Thus, the detailed tables (Tab. 8.9, 8.3, 8.6, ...) report, for each variable and for each

cluster, the timestep t. t is the time when the variable reaches the maximum or the minimum value

(along the 5 computation days). The variation in the values of that variable (for each cluster) from

the ending time to t and from this t to the starting time are reported in the same table. Note that:

� in this table the computation time scale is used, so that a timestep 1 indicates the ending

time when all trajectories are over Trentino, whereas a timestep 121 means 5 days (or 121

hours) before arrival

� generally, the mean height of trajectories decreases in time to rise up in the last hours, the

same occurs for potential temperature and relative humidity, thus the minimum is computed

for these variables

� potential vorticity and equivalent potential temperature generally remain constant and in-

crease in the last hours

� by contrast, specific humidity increases at the beginning and then decreases over Italy, so

the maximum is computed for this variable

Summarizing the results from all the studied events the ranges reported in Tab. 6.1 are observed

for various t:

t̄z t̄q t̄θ t̄PV t̄RH t̄θe
4-20 8-30 18-35 23-70 50-90 8-70

Table 6.1: Typical values (registered over all the studied events) of time steps in which maximum or minimum values
of various variables are registered

In the case of November 1966 the first variables to experience increments are relative humidity

and potential vorticity (2 days before the arrival). After that, trajectories start to rise up (1 day

before the arrival); loss of specific humidity, loss of equivalent potential temperature and increase

in potential temperature occur 8 hours before the ending time. The evolution in time of various

variables during the flood event of November 1966 is so marked that the features of airmasses

during this event can be considered as the basis to derive a conceptual model of the WCB during

extreme precipitation events.

In the other events, airstreams are less compact: various trajectory clusters undergo different dy-

namical and thermodynamical processes.

Morover cluster lifting to upper levels seems to begin after that trajectory clusters start to lose
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specific humidity and to change the potential temperature. This is due to an evaluation error of

tz: in most clusters the trajectory ascent is stopped for an intermediate time lag, which causes to

erroneously shift the computed t z toward the ending time.

The last type of analysis has been used to derive roughly the conceptual model reported in

the following section (6.2). However, it should be applied to a larger number of case studies in

order to have good statistic of the WCB properties for precipitation events occurring over Italy.

Moreover, some improvements should be introduced in the computation of the t time steps: this is

one of the possible developments of the techniques developed in the present thesis.

6.2 Conceptual model

The comparison of the three case studies helps to propose a conceptual model for the airstreams

occurring when intense precipitation events affect the Alps.

6.2.1 Deep convection

Table 8.9 shows that in November 1966 each trajectory cluster attains maximum specific humidity

after its ascent to higher elevations. Trajectories start to rise 21 hours before the arrival (in the

south-east of the Tyrrhenian Sea), while they reach maximum moisture 8 hours before the arrival

(more or less above the cold front). The maximum values of RH are reached even later, or just at

the ending time. Note that in the event of November 1966 the whole air volume above the target

area was at saturation and the same phenomenon occurred in the second phase of November 2002:

this was not true in the event of 2000 and in the first phase of November 2002.

By checking maxima of θe and relative minima of θ, it appears that they almost correspond to the
maxima of specific humidity. Before reaching saturation, therefore, air masses still gain moisture

by evaporation from the sea surface, which is enhanced by the high wind-speed. So it is highly

probable that along the cold front over the north of the Tyrrhenian Sea and over Tuscany deep

convection occurred, which was caused by almost neutral stability conditions (see the values of

θe along cluster trajectories during the last hours). By contrast, at the end of Autumn and with
bad weather conditions, the typical ABL height over the sea should be much smaller. Note that

a similar feature can be found in the behaviour of air masses arriving over Trentino during the

second phase of the 2002 event (in particular the light blue, dark blue and green clusters of the

right Fig. 6.8). In that case a net drop in θ can be read as a sign of precipitation or cloud particles
re-evaporation. Nevertheless, both the absence of the above precipitating layer (most trajectory

clusters undergo the same changes although they flow one above the other) and a weak drop in θ

156



6. Discussion of results

supports the hypothesis of deep convection.

Although the event in November 1966 and the second phase of the event in November 2002 have

such similar features, they differ because:

1. in 2002 there were trajectories (the red cluster) lacking the aforementioned effect;

2. in 2002 the hypothesized deep convection occurred over Tunisia and the Sicily Channel

(not over the Tyrrhenian Sea) since the low center so as the cold front had a more southerly

position;

3. the position of the low center and the strenght of the zonal pressure gradient during the

event of 1966 favour the convergence over the target area of those air masses that originated

at low levels over the Central Mediterranean Sea, i.e. of relatively cold and moist airmasses.

In 2002 airmasses coming from North-Africa, being generally hot and dry, delay saturation

conditions inhibiting possible deep convection.

6.2.2 Specific humidity

Further observations can be derived from the comparison of the average values of specific humid-

ity.

The average values of specific humidity along trajectories, 5 days before the ending time, are quite

similar in the 3 case studies (Fig. 6.11, 6.2, 6.5, 6.5). Nevertheless in the event of 1966 both a

previous precipitation event over the Central Mediterranean Sea and over the north of Africa and

the strong wind blowing over the Gulf of Gabes and over the Gulf of Syrte (Fig. 6.13, 6.14, 6.15,

6.16) favoured extreme values of evaporation over Area 7 (in particular at the boundary with Area

12) in the days before the event (see the map of latent heat flux in Fig. 6.16). In fact in the event

of 1966 almost all trajectories flowed over Area 7 (Tab. 4.1): trajectories originating more or less

over that region increased their specific humidity especially in the first 2 days (120-72 h before the

ending time); trajectories originating over the West Mediterranean Sea gained moisture especially

in the third and in the fourth day (72-24 h before the ending time). In 2002 the specific humidity

increments were smaller because:

1. the latent heat fluxes over the sea were weaker (the surface wind was not so strong and no

surface low was recorded in the previous days over North Africa);

2. about 23 of total number of trajectories originated in the tropical regions of North Africa.

Flow over the Mediterranean Sea lasted only 12-24 h, which prevented gaining of moisture

by evaporation;
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θi[K] θ f [K] θei[K] θe f [K] RHi[%] RH f [%]
1966 293-298 297-312 303-310 313-320 50-70 90-100
2000 297-308 297-307 308-316 308-316 30-40 60-90
2002(1) 297-310 297-310 305-316 310-314 50-60 50-90
2002(2) 303-300 300-310 310-323 313-318 20-40 85-95

Table 6.2: Range of values for the potential temperature, for the equivalent potential temperature and for the relative
humidity in the 4 case studies at the ending time (θ f and θe f ) and 5 days before the arrival (θi and θei)

3. a part of the trajectories came from the inner areas of North Africa flow above the ABL:

their capacity to gain moisture was smaller.

6.2.3 Potential temperature and relative humidity

Table 6.2 summarizes the range of values of θ, θe and RH for the 4 events at the ending time and
5 days before the arrival. The final values of the potential temperature over the target area are

almost always the same. In 1966 the mean values of the potential temperature 5 days before the

ending time are 10 degrees less than in the other cases, that is 10 degrees less than the typical

values over the target area at the ending time (295 K against 305 K). In 1966, thus, there is a net

heating of the air mass system related to the final precipitation. In the other cases there is small

and slow cooling in the first days and a contained ending heating. The recurrent feature of slow

cooling of air masses during the first days is not easy to be explained. It could be radiative cooling

or re-evaporation of low layer clouds.

In the 3 case studies the average values of θ at the ending time are quite similar. On the contrary
the values of equivalent potential temperature (θe) over the target area are very different: it is
colder in the event of November 2000 and in the first phase of the 2002 event, while it is warmer

in the second phase of the 2002 and in the 1966 event. The reason for the difference has to be

found in their specific humidity conten at the ending time. This justifies the saturation of the air

masses at the ending time in 1966 and in the second phase of 2002; saturation is not reached in

the other cases. Regarding the evolution of θe along the trajectories, in 1966 there is a net heating
during the event (from 305 K to 315 K), while in the other cases there is no substantial change

in the mean equivalent potential temperature. By comparing the values of specific humidity and

of the potential temperature, it is reasonable to reconstruct that in 1966 mean value of the relative

humidity is close to the 60% even before the final ascent. By contrast, in 2002 it is about 30-

40%. In fact the 23 of trajectories originating in the tropical regions of North Africa in 2002 show

rather high values of specific humidity, considering the negligible evaporation fluxes above the

desert: they probably represent a warm and moist air plume coming from the ITCZ and crossing
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the tropical anticyclonical band. They are also particularly warm since their average θ is the same
as in the event of 2000, and as in the first phase of 2002, but their initial average height is lower (2

km against 2.5 - 3 km). However, in 1966 the airmasses over the Mediterranean Sea and over the

coastal regions of Africa are much colder and moister: this explains the higher relative humidity

initial values (see also tables 4.1 and 4.2 for more details).

6.2.4 Vertical lifting

By observing the vertical displacement of cluster trajectories in the 4 case studies (δz values in
Tab. 4.2, 4.4, 4.6, 4.8) it results that they experience a strong ascent over areas 1, 2 and 3. By

contrast, they undergo a weak descent over all the other analysis areas, especially over areas 7, 8,

9 and 11, although their average altitude is quite low (trajectories over area 7 already start from

1000m of altitude). This feature is more evident in the case of 1966 when trajectory flowing is

similar to the flight of a "Canadair" airplane while it is recharging its water reserves over a lake or

over the sea.

Trajectory ascent over Area 3 is substantial (and it is accompanied by PV production) both in the

case of 1966 and in the second phase of 2002 (Tab. 6.3). In 2002 trajectories flow inside the WCB,

but farther eastward of the cold front and of the low center. This is the effect of the circular shape

of the low center and of the elongated and oblique position of the warm front which explains the

smaller values of vertical lifting. By recalling the cyclone structure discussed in chapter 2, this

type of WCB can be classified as W1. In fact, in the last 2-4 hours trajectories tend to move anti-

cyclonically eastward. By contrast, in 1966 the cyclonic center has an elongated form, driving the

whole WCB to a short warm front extending only along the italian slopes of the Alps (probably

the warm front, plotted in the synoptic maps of the time - Fig. 4.4-, was in fact the border line

between the WCB and a pool of low level and cold air blocked in front of the Alps). This WCB

can be classified as W2 with a rearward component over the surface cold front and a marked ver-

tical ascent. The surface wind jet and the vertical lifting over the Tyrrhenian Sea are emphasized

by the North-west to South-east trend of the Apennines. In fact, the warm and moist air masses

are forced to flow in a funnel-shaped corridor between the meridional cold front, which slowly

moves to the East and the mountains. The effect is stronger for trajectory clusters close to the cold

front. Afterward, the airmasses cross the Apennines, gather with the airflow from the Adriatic Sea

and hit the Eastern Alps. The convergence of the WCB airmasses over the north of Italy and the

homogeneity of this airstream make the temperature profile almost neutral. In fact the airparcel

rising over the Alps (see Tab. 6.3) is larger than the orographic rise beneath trajectories. The

cyclonic lifting would probably be concentrated only over the Tyrrhenian Sea if it did not have the

mountain barrier.
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air parcel lifting orographic rise air parcel lifting orographic rise
1966 570 480 1470 140
2000 520 750 410 140
2002(1) 360 740 310 140
2002(2) 580 800 700 190

Table 6.3: Mean value of the air parcel lifting as well as of the orographic rise underneath trajectories flowing over
area 1 (target area) and over area 3 (Tyrrhenian Sea)

In 2002 the air parcel ascent over the target δz is not equal to the terrain profile δh. The vertical
compression is due to the absence of horizontal convergence and to the stability of the tempera-

ture profile as determined by the medium level warm and dry airstream flowing from the tropical

African regions.

6.2.5 The simplified model

By summarizing all the observations reported in the previous paragraphs, a simplified conceptual

model is here proposed, which describes the WCB of cyclones producing extreme precipitation

events over the North-east of Italy. Indeed the presence of the orography modifies so strongly

the dynamics and the synoptic of the fronts, that the classical cyclone model has not only to be

adapted but also to be changed.

Generally, the surface low center moves over the Tyrrhenian Sea (sometimes north-eastward of

the Gulf of Genoa, sometimes eastward from the Balearic Islands to Sardinia). The surface cold

front is oriented along meridians from the north of Africa to the low center. The WCB originates

over Africa and the Central Mediterranean Sea and flows from South to North over the Tyrrhenian

Sea, crosses the Apennines and reaches the Alps. The strong southerly wind inside the WCB,

impinging against the Alps, and the low level cold and easterly flow in the Po Valley produce

blocking conditions in front of the Alpine chain. The lo level surface between the WCB and the

pool of cold air blocked in front of the mountains resembles a warm front.

In the case of 2002, the whole ensemble of trajectories can be classified into two main airstreams

(Fig. 6.18):

1. a higher airstream ( 23 of trajectories) flowing from Africa to the Alps: it is warm and rela-

tively dry and its ascent is moderate. Probably, the contribution of this airstream (W1) to the

precipitation over the Alps is not as strong as that of the Oceanic cyclones because of the

long period spent over the Sahara desert. In other words, the effectiveness of moist tropical

plumes from ITCZ in enhancing the mid-latitude cyclones seems to be reduced over the

Mediterranean area.
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2. a lower airstream ( 13 of trajectories) flowing from the Central Mediterranean Sea to the Alps

(W2): it has a lower potential temperature and it is very moist, its ascent is very large. This

airstream gives the largest contribution to the precipitation when a Mediterranean cyclone

deepens over Italy.

Figure 6.18: Conceptual model describing the main features of the WCB for extreme precipitation
events occurring over the Alps. The airstreams ending at the lower(A.) / higher(B.)
levels over Trentino have the characteristics of W2 / W1 conveyor belts.

In the event of 1966 the first type (W1) is essentially absent. Because of the high values of the

vertical velocity in front of the Alps (Fig. 6.17) between 3 and 4 November, all the trajectories

belong to W2 which causes the intense precipitations over the Alps.

The trajectory population of the two portions of WCB is the crucial point controlling the precip-

itation production (see also the next paragraph section 6.2.6). The larger the vertical lifting over

the southerly slopes of Alps, the larger is the amount of airmasses belonging to W2, that is to the

portion of WCB closer to the surface, and the larger is the expected amount of precipitation.

6.2.6 Risk index

The conceptual model can also help to point out a meteorological scenario, precursor of extreme

precipitation events: for example the occurrence of strong surface wind blowing from South to

North over area 7. The risk is even larger if an other precipitation event has hit area 7 in the

previous days.
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Alternatively it is possible to propose a sort of "risk index", as the following:

i �

Narea7

NTOT

1
zarea7

(6.1)

The simple formula tells that strong precipitation occurrs if a high percentage of the total number

of trajectories flows over area 7 having a low average altitude. The formula has been tested over

the 4 case studies: the correlation diagram is reported in Fig. 6.19, where to the left the linear

regression between the risk index and the estimated precipitation is reported and to the right that

between the risk index and the measured precipitation. Obviously, the highest correlation is found

with the estimated precipitation, as the risk index is a product of the trajectory analysis and of the

analysis fields. The gap between analysis and reality is also a feature of the risk index. Anyway

results are very satisfactory, though the test should be extended to many case studies to be robust.

Figure 6.19: Linear regression between the risk index (on the x-axis) and the estimated (left) /
measured (right) precipitation

6.3 Trajectories with BOLAM

Uncertainty in the trajectory computation based on the analysis fields of the global model has

been tested. Analogous simulations have been performed using the output data of the LAMmodel

BOLAM nested on the ECMWF analyses. The various fields of BOLAM forecast are given on

31 sigma vertical levels and on a regular grid with a horizontal resolution of 12.5 km (note that

the orography of the model has the same horizontal resolution). A description of the numerical

schemes implemented in BOLAM to describe the atmospheric physical and dynamical processes

can be found in Buzzi and Malguzzi (1998); Buzzi and Foschini (2000).

The use of the output of a forecast model to compute trajectories has been tested because the

analyses are close to the real atmospheric conditions, but they have a low spatial resolution and a
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coarse schematization of physics and dynamics. By contrast, the weakness of the forecast model

is that the more distant is the forecast time t from the initialization time t0 of the model, the larger

are the forecast errors.

To overcome the problem of the forecast errors, BOLAM has been used to perform a series of sub-

sequent short forecasts: 8 run of 18 hours for totally 144 forecast hours. The initial fields of each

short forecast (the analysis) are not retained for the trajectory computation, but they are replaced

by the +18 h forecast fields of the previous short forecast. The technique is quite complex, but it

allows to obtain high resolution forecast fields, which remain close to the global analyses during

the whole event. It is a sort of dynamical interpolation of analyses, useful for the computation

of high resolution trajectories. In fact, in section 3.1.2 it has been remarked that it is important

to increase both the spatial and the temporal resolution of the input data to reduce the trajectory

errors.

The Lagrangian model FLEXTRA has been adjusted to read the forecast data and to integrate

trajectories by interpolating the wind fields available on sigma-levels of BOLAM. The remain-

ing of the set-up methodology (ending points of the ensemble of trajectories, trajectory clustering

algorithm, ...) has not been substantially modified.

6.3.1 High resolution trajectories for the event of 1966

In the present section the results obtained from the analysis of the event of 03-05 November 1966

are reported. BOLAM forecasts have been produced for the period from 30 October 1966 00 UTC

to 05 November 1966 00 UTC with a temporal resolution of 3 hours. Six ensembles of 5 day

back-trajectories have been computed ending over the target area from 03 November 21 UTC to

04 November 12 UTC every 3 hours.

By comparing Tab. 6.4 and Tab. 6.5 with Tab. 4.1 and Tab. 4.2, it is easy to recognize that back

trajectories keep many characteristic features. The main differences are listed here:

� there is a smaller number of trajectories flowing over area 7 (from 2516 to 1547) and over

area 6 (from 2123 to 1332), whereas the number of trajectories flowing over area 4 is in-

creased (from 1309 to 2217);

� on average, the square roots of variances are larger than in the case of trajectories computed

starting from analyses data. The coherence of the trajectory ensemble is reduced by the

higher wind field resolution. It is intuitive that the coarser are the input data, the more

homogeneous are the computed trajectories, because the numerical interpolation tends to

smooth out the details and to remove the small-scale variability.
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� on average, trajectories flow at a slightly lower height over areas 1, 2, 3 and 4, whereas they

are much higher over area 6. By looking at their average vertical displacement, it is clear

that the vertical lifting over area 1 (target area) is much larger, while it is limited over area 3

(Tyrrhenian Sea). By contrast, the descent of trajectories over areas 6 and 7 is considerable

(north of Africa and Central Mediterranean Sea);

� side by side with the different vertical displacements a change in the specific humidity vari-

ations can be found. A large fall in the average specific humidity occurs over area 1 and a

smaller reduction over area 3. Instead δQTOT does not feel such a large effect over area 1:
this can be explained by the longer time the trajectories take to flow over the target area (in

fact they are a bit slower).

� the average increment of specific humidity over area 7 is larger than in the previous com-

putation (3.10 g
kg
instead of 2.78 g

kg
) but δQTOT is much lower. Possible reasons are both

the smaller number of trajectories flowing over area 7 and the longer period the trajectories

spend over that area.

Nk zm[dam] qm[ gkg ] PVm[PVU] θm[K] θem[K] hm[dam] t[h]
1 2760 286 (143) 5.46 (1.88) 0.28 (2.00) 301.1 (7.4) 317.5 (3.7) 89 (64) 3 (6)
2 2431 108 (132) 7.33 (1.94) 0.57 (0.69) 294.3 (6.2) 315.0 (4.5) 12 (17) 9 (14)
3 2681 127 (98) 6.56 (2.14) 0.36 (0.35) 293.5 (5.3) 311.2 (6.6) 19 (12) 11 (8)
4 2217 199 (140) 3.72 (2.42) 0.36 (0.31) 292.5 (7.2) 303.0 (8.3) 10 (13) 14 (9)
5 - - - - - - - -
6 1332 305 (107) 1.58 (2.26) 0.38 (0.12) 298.4 (3.4) 303.2 (5.0) 59 (34) 23 (13)
7 1547 114 (89) 5.89 (2.24) 0.14 (0.21) 294.5 (4.7) 310.7 (6.8) 18 (37) 30 (20)
8 1450 193 (110) 2.19 (1.26) 0.70 (0.34) 287.4 (5.8) 293.0 (4.8) 35 (17) 9 (4)
9 764 261 (93) 2.60 (2.05) 0.75 (0.26) 292.7 (3.6) 300.4 (4.9) 50 (27) 14 (11)
10 - - - - - - - -
11 - - - - - - - -
12 - - - - - - - -

Table 6.4: Table summarizing the number of trajectories flowing at least for one time step over the 12 macroareas of
Fig. 4.16 during the event of November 1966. The average values (along with the respective variances) of
the height above the surface, of the specific humidity, of the potential vorticity, of the potential temperature,
of the equivalent potential temperature and of the height of the surface underneath are reported for the the
air parcels staying over the various macroareas. The last column gives the average number of time steps
spent by trajectories over each area.

This is supported by figure 6.20. The average "estimated evaporation" along trajectories flow-

ing over area 7 is reduced by one half and the same is true for the "estimated precipitation" over

area 3. A net increment in the average "estimated evaporation" over area 4 is shown.
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δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 182 (149) -2.60 (2.31) 0.03 (2.78) 8.01 (6.76) 1.14 (3.10) 117 (109) -0.059
2 -4 (67) 0.80 (1.38) 0.15 (1.04) 0.08 (3.03) 3.02 (4.33) -4 (47) 0.024
3 53 (142) -0.21 (2.91) 0.23 (0.66) 2.90 (5.54) 2.69 (5.65) 18 (27) 0.000
4 -13 (86) 0.72 (1.65) 0.04 (0.44) 0.88 (4.22) 2.07 (5.13) -8 (52) 0.013
5 - - - - - - -
6 -160 (99) 1.02 (1.50) -0.04 (0.36) -3.19 (3.11) -0.02 (4.11) -27 (42) 0.004
7 -100 (103) 3.10 (3.16) -0.03 (0.33) -1.01 (3.73) 6.96 (7.49) -21 (36) 0.038
8 -89 (59) 0.66 (1.18) -0.47 (0.62) -3.48 (3.87) -1.71 (4.29) -57 (42) 0.005
9 -41 (61) 0.22 (0.75) 0.38 (0.43) -1.47 (2.80) -1.24 (2.97) -14 (51) 0.000
10 - - - - - - -
11 - - - - - - -
12 - - - - - - -

Table 6.5: The mean variations (as well as the respective variances) of the height of the trajectories in passing over
various macroareas (Fig. 4.16) are reported for the event of November 1966. The same is done for the
variations of the specific humidity, of the potential vorticity, of the potential temperature, of the equivalent
potential temperature and of the height of the surface underneath of the parcels. The last column gives
the quantity of water vapour (computed by the equation4.6) gained or lost by all the trajectories over each
area.

In Fig. 6.21 and Fig. 6.22 the trajectory clusters which have been computed applying the "final

Figure 6.20: Average in time and in space of evaporation and of Lagrangian specific humidity
variation (computed following the refined method of Eq. 4.18) in kgm

�

2h
�

1 over
various areas (x-axis) in the period from 31/10/66 00 UTC to 04/11/66 00 UTC. The
ensemble of trajectories has been computed starting from the output of the BOLAM
model.

geographical clustering" algorithm to the whole set of trajectories are reported. By comparing

these figures with Fig. 6.10, 6.11 and 6.12 it is clear that the most trajectories reach the bound-

ary of the BOLAM domain before the 5 days integration has come to the end. Because of that
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the green cluster in Fig. 6.21 does not show the slow anticyclonically movement of air masses

which is clearly visible in the violet and green clusters in Fig. 6.10 ("final geographical cluster-

ing" algorithm). The most relevant information is that the warm conveyor belt is not completely

homogeneous any more.

−120 −100 −80 −60 −40 −20 0
0

1

2

3

4

5

6

7

8

t [hours]

z m
 [k

m
]

−120 −100 −80 −60 −40 −20 0
0

1

2

3

4

5

6

7

8

t [hours]

z m
 [k

m
]

−120 −100 −80 −60 −40 −20 0
0

1

2

3

4

5

6

7

8

9

10

t [hours]

q+
w

liq
+w

ic
e   

[g
/k

g]

Figure 6.21: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to 04/11/66 12 UTC
obtained from the "final geographical clustering" algorithm. In the first plot each curve is the average,
in the physical space, of all trajectories belonging to that cluster. The average position every hour is
marked by a small circle, the position every 24 hours by a big one. The number of trajectories for each
cluster is reported. In the following plots there are the average height of the clusters above the surface,
the average height above the mean sea level of the cluster (and of the terrain beneath them) and the
average water concentration. The ensemble of trajectories has been computed starting from the output
of the BOLAM model.
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Figure 6.22: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to 04/11/66 12 UTC
obtained from the "final geographical clustering" algorithm. In the plots there are the average relative
humidity, the average potential vorticity respectively, the average potential temperature and the average
equivalent potential temperature of the clusters. The clusters have been marked by different colors
and circles of different size according to figure 6.21. The ensemble of trajectories has been computed
starting from the output of the BOLAM model.

Differences in the two airstreams, which have been already pointed out in section 6.2, are

emphasized in the followings:

1. In a 2 day period (85-13 h before the ending time) the red and the light blue cluster trajec-

tories flow northward over the north of Tunisia, the Sicily Channel, the Ionic Sea and the

south of Italy gaining much of their specific humidity (from 3.5 g
kg
to 9 g

kg
) since they are in

the ABL. Side by side with the specific humidity their mean equivalent potential tempera-

ture rises by 20 degrees. Then, in the last day they are over the eastern side of the Tyrrhenian

Sea, cross the Apennines over Central Italy, flow along the Adriatic Sea and end over the

Alps.

2. The green cluster flowing in the last day close to the cold front originates over the north

of Africa. Unfortunately the actual dimension of the BOLAM domain does not allow to
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compute full 5 days back-trajectories. Thus, it is not possible to verify if they gain the

moisture from area 7 as suggested in the previous Lagrangian study.

It is possible to hypothesize that both the LAM model resolution of physics and dynamics and

the higher resolution orography (in BOLAM) induce a stronger wind vertical component over the

target area in front of the Alpine chain (on Fig. 6.17 the analysis vertical wind component is

reported), which is suggested by the higher increments of the mountain orography beneath the

trajectories (on average +1770m against +480m of the previous analysis). Most of the airmasses

ending over Trentino are lifted from the lower levels, where the wind has a clear westward com-

ponent. Because of that air masses flowing at very low levels over the Adriatic Sea and over the

south of Italy are driven over Trentino. The northerly position of these airmasses in the previous

days explains the followings:

� the lowest contribution of the evaporation over area 7 to the final precipitation over Trentino;

� the apparent absence of precipitation over area 3. In fact over the northern part of the

Tyrrhenian Sea (over Tuscany) the green cluster undergoes a strong lifting and produces

precipitation in the last day. On the contrary, over the southern part the light blue cluster

gains moisture in the last 2-3 days before the ending time.

So previous results about the water budget over the Mediterranean area are fundamentally con-

firmed. Computing trajectories using the outputs of a forecast model shows only a northward shift

of the source-area where most of the water vapour comes from.

In order to better estimate the uncertainty of the trajectory computation related to the temporal and

spatial resolution of the wind field it would be better to enlarge the domain of BOLAM, especially

southward. This would avoid to stop the numerical integration of most trajectories and to lose

further valuable data.
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7.0.2 Overview of the work

The present thesis aims at the reconstruction and the analysis of the moist airstreams governing

the transport of water vapour over the Mediterranean basin and producing precipitation over the

southerly slopes of the Alps. A Lagrangian methodology has been set and tested on some extreme

precipitation events that occurred in the area of the Province of Trento (section 3.3.2). Results

have been reported for the flood events of 3-5 November 1966, 16-18 November 2000 and 24-

26 November 2002. In particular ensembles of back trajectories have been computed by using

the model FLEXTRA. This model is already a widely used instrument, which would need some

further test only in the spatial interpolation algorithms (chapter 3). To compute back trajectories,

ECMWF analyses have been used because:

1. they are the global analyses with the highest spatial and temporal resolution available today;

2. they are available for all the events in the last four decades (ERA40 for 1966 event);

3. they are available on hybrid vertical coordinates allowing for a precise calculation of the

vertical wind speed.

The forecast fields of the mesoscale model BOLAM have been also tested to compute higher

resolution back-trajectories.

7.0.3 The set up of an analysis methodology

To provide, as far as possible, quantitative criteria consistent with a back-trajectory approach the

whole surface domain, flown over by computed airflows, has been subdivided in suitable macroar-

eas covering the European and Mediterranean regions (section 4.2). A simple statistical analysis

of the meteorological variables along trajectories over various macroareas providing suitable aver-

ages and variances has proven to be a useful instrument to point out the occurrence of interesting

meteorological features (e.g. deep convection, intense latent heat fluxes, atmospheric instability
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or neutrality, ...). Although the analysis of singular meteorological events with a LAM model (i.e.

from an Eulerian point of view) is generally more detailed and complete, the advantage of the

lagrangian method consists in the capability of connecting them by airmass back trajectories. For

example it is possible to say that on 03 November 1966 deep convection over the Tyrrhenian Sea

contributed to reinforce water vapour fluxes to the lower atmospheric layer and finally to enhance

the precipitation over Trentino. The choice of "macroareas" was intuitive and driven by subjective

reasonings about areas of high (e.g. sea surface) or low evaporation (e.g. desertic areas); possible

improvements based on more objective criteria can be tested as future developments (for example

a finer detail can be given to the areal classification of the Central Mediterranean Sea).

Afterward, refined techniques of trajectory cluster analysis helped to identify and characterize

airstreams driving the water vapour from the respective source regions to the Alps (chapter 5). In

particular, in the present work a new two-step agglomerative algorithm has been adapted. The

version finally adopted of this algorithm has solved some problems of the previous method (Bertò

et al., 2004) arising from the use of different variables as general coordinates (e.g. geographical

position and specific humidity variations) to define a suitable phase space for clustering. A final

choice about the best clustering algorithm to be used in this kind of problems can be made after

many case studies have been considered.

The method, howevers, appears to be relatively well tested, and ready to be used in further ap-

plications, such as the verification of NWP model forecasts. In fact, in the literature, quantitative

precipitation forecasts are usually verified by means of pointwise comparisons between local mea-

surements by rain gauges and model forecasts interpolated at the sites of observations. As a conse-

quence, the distribution of rain gauges in the simulation domain plays a major role in verification,

whose results mostly depend on the model performance in areas where the rain gauge network is

denser. So cluster analysis can be adopted in this context as an objective method to create groups

of rain gauges displaying interrelated measurements. Then for each group verification indexes

shall be computed.

7.0.4 Results

The analysis of the three selected extreme precipitation events shows that precipitation over Trentino

is strongly conditioned by the evaporation processes and by the airmasses properties over the Cen-

tral Mediterranean area (see section 4.2.1). In particular, most of the water vapour contributing to

the ending precipitation over the Alps originates over Tunisia, the coastal regions in eastern Alge-

ria and in western Lybia, the Channel of Sicily, the Gulf of Gabes and the southern Tyrrhenian Sea

(Fig. 7.1). The results deriving from the application of both the budget and the cluster analysis
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Figure 7.1: Geographical area where most of the evaporation contributing to precipitation over
Trentino (during the extreme events of 3-5 November 1966, 16-18 November 2000
and 24-26 November 2002) occurred.

outline different aspects which depend on the extreme precipitation event considered. Neverthe-

less, a simplified conceptual model has been proposed to visualize the traits of the moist airstreams

within the Mediterranean cyclones (see chapter 6): a surface low slowly moves over the Tyrrhe-

nian Sea (sometimes north-eastward of the Gulf of Genoa, sometimes eastward of the Balears and

Sardinia), accompanied by a surface cold front, which is commonly meridionally oriented from

North Africa to the low center. The WCB originates over Africa and the Central Mediterranean

Sea and flows South to North over the Tyrrhenian Sea, crosses the Apennines and the Alps, forcing

a pool of cold air to remain blocked in the Po Valley in front of the mountains. Airstreams ending

at the lower levels over Trentino display typical characters of a W2 conveyor belt (Browning and

Roberts, 1996): they originate over the Central Mediterranean Sea, are very moist and relatively

cold; their lifting and precipitation production is generally enhanced by the Alpine chain. The

airstreams ending at the higher levels over Trentino have the characteristics of a W1 conveyor

belt, although their contribution to the precipitation over the Alps is moderate, because they flow

for a long time over the Sahara desert.

The trajectory populations of the two portions of WCB is the crucial point controlling the precipi-

tation production (section 6.2). The higher is the vertical lifting over the southerly slopes of Alps,

the larger is the amount of airmasses belonging to W1 (i.e. to the portion of WCB closer to the

surface) and the larger is the expected amount of precipitation.
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Following this observation, a risk index of extreme precipitation over Trentino has been proposed,

based on the path of the computed back trajectories (section 6.2.6). Note that the evaporation rate

over the sea (related to the SST and to the surface wind speed) is one of the elements concurring

to enhance the probability of precipitation. Nevertheless the results of the study show that the

equation "higher evaporation = higher precipitation" is not always valid, and that the intensity and

the dynamics of the low system are more crucial (chapter 4).

The uncertainty of back trajectory computation deriving from spatial and temporal resolution of

the input wind fields has been tested. The conceptual model is not sapped although limited shifts

of the evaporation areas can be present. The vertical motion, particularly sensitive to the orogra-

phy resolution, is mostly responsible for this type of errors (see section 6.3).

Recently, some authors have looked at the tropical cyclones over the Atlantic Ocean as precur-

sors of intense localized precipitation in the Mediterranean basin (Turato, 2003; Pinto et al., 2001).

The reconstruction of longer back-trajectories (10-15 days) would be necessary to explore the wa-

ter vapour budget on a wider domain, which includes the Atlantic Ocean and Northern America.

However, the present study has shown a strong dispersion within the 5 days back-trajectory en-

sembles, which suggests that any reconstruction of correlated precursors at that time lag is difficult

to be demonstrated. By contrast, a deeper investigation of the mesoscale mechanisms (such as oro-

graphic precipitation) over the Alps can lead to underestimating or neglecting the synoptic scale

effects (Gheusi and Stein, 2002; Medina and Houze, 2003; Rotunno and Ferretti, 2001, 2003). The

present analysis, therefore, focused on the description, and the quantification of the atmospheric

water transport at the scale of the Mediterranean basin. This study considers for the first time

the 3D airstream structure of the Mediterranean cyclones producing heavy precipitation events in

order to outline both the orographic forcing of the mountains (the Alps, the Apennines and the

Atlas) and the effect of the synoptic scale distribution of the continental, desertic and sea surfaces.

So far, the methodology has been tested only on three selected events. In a near future it should be

applied on a larger number of precipitation cases in order to reconstruct a climatology of both the

WCBs and the evaporation areas contributing to the precipitation over the Alpine region.

As shown in the 2001 report of the Intergovernmental Panel on Climate Change, the average pre-

cipitation rate over the Northern Emisphere is increasing (ICCP, 2001). In fact with the "global

warming" (Fig. 7.2), the surface energy budget tends to become increasingly dominated by evap-

oration, owing to the increase in the water holding capacity of the boundary layer. Globally there

must be an increase in precipitation to balance the enhanced evaporation but "the processes by

which precipitation is altered locally is not well understood". However, in the Mediterranean re-

gion several proxy data indicate that overall precipitation is decreasing. Thus, precipitation must
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Figure 7.2: Variations of the Earth’s surface temperature over the last 140 years and over the
last millennium (ICCP, 2001). In a) the the annual values and the filtered evolution
(black line) of the Earth’s surface temperature are shown as derived from thermome-
ters measurements. In b) the evolution of global temperature is reported as derived
from "proxy-data".

have changed the distribution, both in space and in time. Instead of regular, seasonal precipitation

distribution, we have "extreme events" and then periods when evapotranspiration prevails. Any-

way the report adds that "where and when available, changes in annual streamflow often relate

well to changes in total precipitation" (ICCP, 2001). Because of that the present work supplies an
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instrument able to investigate and to estimate the changes in water vapour transport mechanisms

over the Mediterranean area. A 40 years trajectory climatology starting from the ERA40 data

would provide the possibility to point out the variations in the WCB structure due to the NAO

index.

Otherwise enhanced precipitation rates cause also higher latent heat release. So global precipita-

tion exibits small increments, but it becomes increasingly concentrated in fewer intense precipita-

tion events, as observed to occurr in many parts of the world. In the CIPRA report (2002) (CIPRA,

2002) about the climate changes in the Alps it is reported that the average temperature in Switzer-

land has registered increments of more than 1 degree over the last century (Frei and Schär, 2001).

Furthermore it is shown that an increment of 2 degrees in the global temperature would produce

an increment of 20-40% in the extreme precipitation events. In fact the water vapour flux crossing

the Marittime Alps and the Apennines during the flood event of October 2000 in Piedmont was

comparable with water vapour amounts transported in the tropical regions. So it is clear that the

lagrangian analysis can also help to explain the reasons of the explosion of such sudden extreme

events.

Another development of the present work is the comparison of the trajectories results with the

δ18O isotopic content in the precipitated water (see chapter 2). Since the isotopic concentration
over the sea surface is relatively well known, the δ18O isotope will be essentially used as a ma-
terial tracer to check the reliability of the computed trajectories. Moreover δ18O is the isotopic
content of the atmospheric water vapour, not generally of the air masses: so it would really be a

tracer of the water vapour trajectories (section 3.1.3), which is the goal of the present research and

of the project AQUAPAST. For example we should be able to understand if the specific humidity

increment along trajectories over a specific macroarea is due to evaporation from the sea or to

reevaporation of precipitation from higher levels. Another way to estimate the trajectory uncer-

tainty is obviously the use of input wind field provided by various models and with various spatial

and temporal resolutions. As anticipated in 6.3 this work is already in progress and only requires

a better calibration of the LAM model domain and of graphical tools for data visualization.

Finally a new challenge will be the analysis and interpretation of δ18O isotopic content in the
carbonate of stalagmites (chapter 2). First of all the output of the GCM would be necessary to

integrate air mass trajectories, then other elements should be taken into account such as the chem-

ical reactions occuring in the soil when precipitating water seeps in the terrain. So the cooperation

of a team of experts in various fields (geology, climatology and meteorology) will be necessary to

reconstruct the big changes in the past of the atmospheric circulation over the Mediterranean Sea

and over the Alps.
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8 Appendix

8.1 Cluster analysis of the 1966 event
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Figure 8.1: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to 04/11/66 12 UTC
obtained from the "direct clustering" algorithm. In the first plot each curve is the average, in the physical
space, of all trajectories belonging to that cluster. The average position every 1 hour is marked by a small
circle, the position every 24 hours by a big one. The number of trajectories for each cluster is reported. In
the following plots there are respectivelly the average height of the clusters above the surface, the average
height above the mean sea level of the cluster (and of the terrain beneath them) and the average water
concentration.
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Figure 8.2: Clusters of trajectories arriving over Trentino in the period from 03/11/66 21 UTC to 04/11/66 12 UTC
obtained from the "direct clustering" algorithm. In the plots there are the average relative humidity,
the average potential vorticity, the average potential temperature and the average equivalent potential
temperature of the clusters. The clusters have been marked by different colors and circles of different
size according to figure 8.1.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 355 (125) 4.18 (1.54) 0.77 (0.07) 304.1 (6.2) 316.9 (2.0) 84 (10) 1 ( 1)
2 2760 254 (155) 5.47 (1.89) 0.61 0.26) 300.3 (6.7) 316.8 (2.2) 32 (17) 2 (9)
3 2760 138 (73) 7.20 (1.16) 0.43 (0.18) 297.1 (3.5) 318.3 (3.4) 12 ( 4) 13 ( 6)
4 2031 209 (49) 3.49 (1.00) 0.35 (0.07) 293.7 (2.2) 304.2 (3.1) 37 (23) 17 (49)
5 316 205 (23) 4.72 (0.65) 0.47 (0.09) 302.1 (1.6) 316.6 (3.6) 22 ( 9) 7 (91)
6 2649 149 (54) 5.39 (1.68) 0.24 (0.06) 296.5 (3.4) 312.6 (6.9) 29 (10) 25 (31)
7 2686 110 (37) 6.25 (1.07) 0.21 (0.08) 295.8 (2.8) 314.2 (4.6) 16 (12) 27 (17)
8 780 255 (43) 2.26 (0.65) 0.49 (0.09) 291.6 (1.8) 298.4 (2.3) 50 ( 6) 17 (78)
9 - - - - - - - -
10 - - - - - - - -
11 74 188 (178) 2.46 (1.18) 0.56 (0.12) 288.5 (6.8) 295.7 (3.5) 13 ( 8) 45 (55)
12 729 133 (11) 6.10 (0.90) 0.15 (0.07) 301.0 (2.4) 319.4 (0.5) 37 ( 7) 50 (31)

Table 8.1: The same quantities shown in Tab.4.1 are reported for the event of November 1966. In the present table
data have been computed starting from the cluster trajectories (obtained using the "final geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position and
the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 52 (23) -0.93 (0.49) 0.02 (0.06) 2.03 (0.89) -0.56 (0.53) 39 (15) -0.060
2 38 (46) -0.47 (0.42) 0.06 (0.13) 1.15 (0.75) -0.18 (0.61) 20 (12) -0.034
3 187 (238) -1.98 (2.30) 0.43 (0.18) 5.07 (4.69) -0.33 (2.52) 21 (14) -0.106
4 -19 (22) 0.60 (0.59) -0.07 (0.10) 0.21 (1.30) 1.91 (2.53) -10 (11) 0.027
5 -8 (10) 0.07 (0.22) -0.09 (0.07) -0.27 (0.58) -0.08 (0.01) 7 (34) 0.000
6 -23 (43) 0.39 (0.86) -0.02 (0.13) 0.27 (0.96) 1.42 (2.98) -11 (11) 0.034
7 -47 (72) 1.91 (1.77) 0.00 (0.12) -0.02 (0.86) 5.41 (5.08) -6 (9) 0.168
8 -42 (49) 0.45 (0.13) -0.05 (0.17) -0.31 (0.91) 0.97 (1.15) 0 (19) 0.008
9 - - - - - - -
10 - - - - - - -
11 -89 (93) 1.85 (1.28) -0.07 (0.03) -1.32 (0.53) 4.00 (3.12) -30 (31) 0.003
12 -32 (44) 0.01 (0.55) -0.17 (0.16) 1.78 (0.46) 1.96 (1.89) 8 (10) 0.000

Table 8.2: The same quantities shown in Tab.4.2 are reported for the event of November 1966. In the present table
data have been computed starting from the cluster trajectories (obtained using the "final geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position and
the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 averadge
N 669 623 37 413 628 316 74
tq 9 4 12 8 12 10 14 8.7
deltaq1 -7.20 -5.13 -7.69 -1.77 -4.75 -1.24 -5.91 -4.7
deltaq2 0.18 0.06 0.76 0.28 0.56 0.21 0.37 0.3
tz 1 1 2 2 3 4 4 1.9
deltaz1 252 143 386 275 428 408 373 293.7
deltaz2 -2535 -1902 -1192 -322 -907 -793 -1106 -1434.7
tT 109 14 121 99 103 10 87 72.9
deltaT1 7.2 3.2 12.2 7.1 15.1 10.8 18.2 8.9
deltaT2 1.3 -1.9 7.9 0.2 2.1 -0.9 2.5 0.5
tTe 9 4 13 37 13 56 3 18.2
deltaTe1 -4.8 -2.1 -9.5 -1.7 -3.4 -0.6 3.3 -2.8
deltaTe2 21.9 12.3 29.9 5.2 15.7 2.5 19.0 13.61
tRH 67 115 46 21 24 41 113 59.1424
deltaRH1 48 47 36 52 35 54 44 45.819
deltaRH2 -4 0 -6 -8 0 -21 -4 -4.7
tPV 30 37 52 34 46 55 32 39.0
deltaPV1 0.76 0.74 0.86 0.72 0.62 0.60 0.43 0.7
deltaPV2 -0.44 -0.34 -0.23 -0.12 -0.17 -0.45 -0.43 -0.3

Table 8.3: "Final geographical clustering" applied to 1966 event. For each variable and for each cluster t is reported
as well as the variation in the values of that variable (for each cluster) from the ending time to t and from
this t to the starting time (see section 6.1.4 for details). In the last column there is the weighted average
over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 349 (113) 4.28 (1.39) 0.78 (0.07) 303.8 (5.4) 317.0 (1.7) 78 (7) 1 (1 )
2 1842 222 (150) 6.17 (2.01) 0.62 (0.21) 298.9 (6.3) 317.2 (1.0) 33 (15) 2 (8 )
3 2760 135 (74) 7.09 (1.16) 0.40 (0.19) 296.5 (4.0) 317.4 (4.2) 12 (3) 12 (7 )
4 940 228 (82) 2.93 (1.58) 0.38 (0.10) 291.4 (3.3) 300.0 (4.1) 28 (13) 19 (46 )
5 316 205 (23) 4.72 (0.65) 0.47 (0.09) 302.1 (1.6) 316.6 (3.6) 22 (9) 7 (91 )
6 2477 149 (55) 5.45 (1.91) 0.23 (0.08) 296.9 (3.1) 313.1 (7.0) 30 (12) 32 (28 )
7 2686 112 (34) 6.18 (0.97) 0.22 (0.08) 296.0 (2.6) 314.3 (4.4) 17 (13) 21 (19 )
8 940 268 (87) 2.12 (0.89) 0.54 (0.03) 291.0 (3.9) 297.3 (2.2) 45 (5) 19 (77 )
9 866 312 (78) 1.68 (0.68) 0.56 (0.08) 291.8 (4.0) 296.8 (2.2) 48 (8) 4 (102 )
10 - - - - - - - -
11 74 188 (178) 2.46 (1.18) 0.56 (0.12) 288.5 (6.8) 295.7 (3.5) 13 (8) 45 (55 )
12 439 132 (20) 5.80 (1.22) 0.17 (0.05) 302.5 (2.2) 320.2 (1.5) 42 (1) 70 (37 )

Table 8.4: The same quantities shown in Tab.4.1 are reported for the event of November 1966. In the present table
data have been computed starting from the cluster trajectories (obtained using the "initial geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position and
the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 63 (22) -1.11 (0.47) 0.02 (0.06) 2.48 (0.86) -0.63 (0.69) 46 (13) -0.057
2 54 (60) -0.82 (0.77) 0.11 (0.11) 1.48 (0.85) -0.78 (1.32) 23 (10) -0.032
3 170 (222) -1.67 (1.87) 0.41 (0.17) 4.72 (3.88) 0.17 (2.10) 19 (15) -0.079
4 -33 (35) 0.77 (0.85) -0.09 (0.15) 1.11 (1.30) 3.38 (3.16) 4 (18) 0.013
5 -8 (10) 0.07 (0.22) -0.09 (0.07) -0.27 (0.58) -0.08 (0.01) 7 (34) 0.000
6 -22 (42) 0.41 (0.65) -0.04 (0.11) 0.50 (1.40) 1.75 (2.41) -15 (21) 0.027
7 -39 (66) 1.71 (2.05) 0.01 (0.14) -0.31 (1.13) 4.50 (5.72) -5 (6) 0.147
8 -45 (50) 0.60 (0.14) -0.10 (0.11) -0.31 (0.92) 1.40 (0.94) -8 (18) 0.011
9 -15 (22) 0.10 (0.09) 0.00 (0.07) -0.38 (1.81) -0.11 (1.77) -1 (9) 0.002
10 - - - - - - -
11 -89 (93) 1.85 (1.28) -0.07 (0.03) -1.32 (0.53) 4.00 (3.12) -30 (31) 0.002
12 -45 (57) -0.45 (1.15) -0.21 (0.24) 2.71 (1.27) 1.65 (2.80) 13 (14) -0.003

Table 8.5: The same quantities shown in Tab.4.2 are reported for the event of November 1966. In the present table
data have been computed starting from the cluster trajectories (obtained using the "initial geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position and
the average properties of the cluster.
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quantity cluster1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 averadge
N 463 209 657 918 123 316 74
tq 4 9 9 11 71 10 14 11.8
deltaq1 -4.04 -6.12 -7.42 -3.44 -5.13 -1.24 -5.91 -4.6
deltaq2 0.07 0.19 0.17 0.49 3.46 0.21 0.37 0.4
tz 1 1 1 2 5 4 4 1.9
deltaz1 177 217 221 372 367 408 373 295.6
deltaz2 -1251 -1503 -3102 -687 -945 -793 -1106 -1453.0
tT 14 104 52 103 94 10 87 64.5
deltaT1 4.0 5.9 6.2 11.9 14.6 10.8 18.2 8.9
deltaT2 -2.5 7.7 -0.6 1.7 -3.7 -0.9 2.5 0.4
tTe 4 7 9 13 64 56 3 17.0
deltaTe1 -1.5 -4.5 -3.9 -2.5 -3.8 -0.6 3.3 -2.5
deltaTe2 8.3 25.3 20.6 11.5 10.5 2.5 19.0 13.30
tRH 121 26 68 23 27 41 113 55.0312
deltaRH1 52 39 55 40 49 54 44 47.9806
deltaRH2 0 -25 -6 -1 -13 -21 -4 -6.9
tPV 37 51 30 49 40 55 32 42.4
deltaPV1 0.81 0.77 0.72 0.65 0.66 0.60 0.43 0.7
deltaPV2 -0.18 -0.49 -0.51 -0.15 -0.11 -0.45 -0.43 -0.3

Table 8.6: "Initial geographical clustering" applied to 1966 event. For each variable and for each cluster t is reported
as well as the variation in the values of that variable (for each cluster) from the ending time to t and from
this t to the starting time (see section 6.1.4 for details). In the last column there is the weighted average
over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 351 (127) 4.27 (1.63) 0.76 (0.08) 303.9 (6.1) 317.0 (1.8) 81 (9) 1 (2 )
2 2697 252 (151) 5.53 (1.85) 0.61 (0.25) 300.3 (6.5) 316.9 (2.1) 32 (16) 2 (9 )
3 2760 138 (70) 7.19 (0.94) 0.43 (0.17) 297.2 (3.2) 318.4 (3.3) 13 (3) 12 (6 )
4 2377 205 (43) 3.70 (0.77) 0.36 (0.07) 294.1 (1.9) 305.1 (1.9) 38 (23) 22 (44 )
5 367 198 (34) 4.52 (0.69) 0.46 (0.10) 299.9 (5.1) 313.7 (6.9) 21 (9) 7 (90 )
6 2618 150 (48) 5.30 (1.38) 0.25 (0.06) 295.3 (4.0) 311.0 (6.2) 27 (12) 21 (33 )
7 2393 100 (26) 6.49 (1.03) 0.18 (0.08) 295.0 (1.7) 314.1 (4.1) 15 (5) 32 (14 )
8 73 225 (156) 3.04 (1.65) 0.50 (0.07) 291.9 (5.7) 300.9 (5.2) 37 (16) 27 (69 )
9 10 738 (439) 0.09 (1.63) 0.61 (0.00) 307.9 (17.9) 308.3 (13.1) 26 (23) 13 (99 )
10 - - - - - - - -
11 73 282 (226) 1.91 (0.97) 0.61 (0.08) 292.0 (7.8) 297.7 (5.2) 14 (9) 40 (61 )
12 383 130 (28) 5.44 (1.01) 0.20 (0.07) 303.0 (2.3) 319.6 (0.4) 39 (6) 77 (37 )

Table 8.7: The same quantities shown in Tab.4.1 are reported for the event of November 1966. In the present table data
have been computed starting from the cluster trajectories (obtained using the "direct clustering" algorithm)
so as all trajectories gathered together into one cluster had the average position and the average properties
of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 58 (27) -1.04 (0.60) 0.05 (0.10) 2.18 (0.95) -0.70 (0.75) 43 (16) -0.057
2 33 (41) -0.37 (0.47) 0.04 (0.10) 1.06 (0.83) 0.02 (0.61) 17 (11) -0.021
3 187 (238) -2.04 (2.26) 0.44 (0.14) 5.06 (4.65) -0.52 (2.26) 20 (14) -0.093
4 -31 (32) 0.91 (0.47) -0.06 (0.07) -0.50 (1.81) 2.05 (2.05) -13 (14) 0.041
5 -10 (13) 0.13 (0.17) -0.16 (0.16) -0.17 (0.71) 0.20 (0.27) 8 (33) 0.001
6 -24 (44) 0.48 (0.72) -0.04 (0.13) 0.44 (1.05) 1.85 (2.69) -8 (9) 0.036
7 -47 (64) 1.78 (1.30) 0.01 (0.10) 0.27 (1.13) 5.32 (3.37) -5 (9) 0.122
8 -44 (84) 0.55 (0.19) -0.19 (0.08) 0.91 (1.27) 2.56 (1.83) 40 (55) 0.001
9 -74 (82) 0.04 (0.08) -0.13 (0.21) -2.55 (0.40) -2.39 (0.54) 32 (41) 0.000
10 - - - - - - -
11 -97 (102) 1.70 (1.32) -0.04 (0.01) -1.89 (1.19) 3.00 (2.59) -34 (37) 0.002
12 -43 (56) 0.04 (0.56) -0.21 (0.14) 2.42 (0.92) 2.74 (2.32) 5 (9) 0.000

Table 8.8: The same quantities shown in Tab.4.2 are reported for the event of November 1966. In the present table data
have been computed starting from the cluster trajectories (obtained using the "direct clustering" algorithm)
so as all trajectories gathered together into one cluster had the average position and the average properties
of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 averadge
N 1119 545 79 640 63 10 304
tq 9 4 5 12 14 3 10 8.8
deltaq1 -4.05 -2.00 -2.34 -6.86 -5.12 -1.57 -3.93 -4.2
deltaq2 5.44 4.94 0.98 4.94 5.81 7.27 1.13 4.6
tz 2 1 10 3 4 1 4 2.2
deltaz1 27 14 22 43 36 11 41 29.5
deltaz2 -182 -175 -13 -94 -128 -740 -80 -144.9
tT 97 14 103 103 86 3 10 72.0
deltaT1 7.4 3.2 3.8 15.2 17.4 3.3 10.7 8.9
deltaT2 0.8 -1.7 0.0 2.6 1.9 -17.1 -1.0 0.4
tTe 9 4 96 13 3 19 56 16.5
deltaTe1 -3.6 -2.3 -2.7 -3.8 3.4 -0.9 -0.7 -2.9
deltaTe2 16.3 12.2 2.9 16.8 18.5 4.0 2.2 13.69
tRH 110 36 86 24 112 82 52 68.3145
deltaRH1 45 46 64 34 52 91 54 44.6569
deltaRH2 -1 0 -14 -1 -7 -17 -21 -3.6
tPV 33 38 97 46 32 34 55 41.2
deltaPV1 0.72 0.75 1.05 0.62 0.42 0.69 0.60 0.7
deltaPV2 -0.33 -0.35 -0.10 -0.16 -0.40 -0.50 -0.47 -0.3

Table 8.9: "Direct clustering" applied to 1966 event. For each variable and for each cluster t is reported as well as
the variation in the values of that variable (for each cluster) from the ending time to t and from this t to
the starting time (see section 6.1.4 for details). In the last column there is the weighted average over the
cluster population.
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8.2 Cluster analysis of the 2000 event
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Figure 8.3: Clusters of trajectories arriving over Trentino in the period from 16/11/00 18 UTC to 17/11/00 18 UTC
obtained from the "direct clustering" algorithm. In the first plot each curve is the average, in the physical
space, of all trajectories belonging to that cluster. The average position every 1 hour is marked by a small
circle, the position every 24 hours by a big one. The number of trajectories for each cluster is reported. In
the following plots there are respectivelly the average height of the clusters above the surface, the average
height above the mean sea level of the cluster (and of the terrain beneath them) and the average water
concentration.
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Figure 8.4: Clusters of trajectories arriving over Trentino in the period from 16/11/00 18 UTC to 17/11/00 18 UTC
obtained from the "direct clustering" algorithm. In the plots there are the average relative humidity,
the average potential vorticity, the average potential temperature and the average equivalent potential
temperature of the clusters. The clusters have been marked by different colors and circles of different
size according to figure 8.1.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 4140 353 (111) 3.35 (1.29) 0.61 (0.08) 300.9 (4.8) 311.1 (1.6) 78 (14) 2 (2)
2 4140 310 (124) 3.77 (1.45) 0.60 (0.06) 299.9 (5.0) 311.4 (1.2) 39 (22) 1 (16)
3 4140 230 (114) 3.72 (1.31) 0.48 (0.11) 298.8 (4.4) 310.0 (2.7) 21 (9) 22 (21)
4 3885 283 (97) 2.96 (1.79) 0.41 (0.20) 301.3 (5.9) 310.5 (2.8) 19 (10) 17 (13)
5 227 511 (192) 0.88 (1.22) 1.62 (1.14) 305.5 (7.1) 308.4 (5.3) 18 (21) 14 (70)
6 2243 238 (80) 3.55 (0.91) 0.34 (0.22) 303.2 (1.4) 314.3 (2.9) 33 (12) 18 (15)
7 2058 160 (50) 3.67 (0.62) 0.36 (0.06) 297.1 (5.1) 308.1 (6.0) 22 (9) 29 (8)
8 227 498 (266) 0.94 (2.62) 1.33 (1.05) 306.0 (12.7) 309.1 (6.3) 25 (13) 8 (42)
9 - - - - - - - -)
10 - - - - - - - -)
11 227 596 (393) 1.19 (2.80) 1.69 (1.77) 307.2 (10.3) 311.0 (4.6) 7 (7) 42 (11)
12 2110 187 (6) 3.45 (0.78) 0.26 (0.09) 303.6 (1.9) 314.3 (4.3) 39 (2) 74 (38)

Table 8.10: The same quantities shown in Tab.4.3 are reported for the event of November 2000. In the present table
data have been computed starting from the cluster trajectories (obtained using the "final geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position
and the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 45 (15) -0.50 (0.30) 0.02 (0.08) 1.22 (0.52) -0.23 (0.37) 56 (20) -0.029
2 27 (28) -0.19 (0.27) 0.01 (0.04) 0.43 (0.59) -0.10 (0.27) 13 (23) -0.010
3 36 (52) 0.26 (0.39) 0.11 (0.10) -0.39 (0.65) 0.35 (0.94) 12 (8) 0.022
4 -4 (29) -0.20 (0.64) 0.02 (0.17) -0.36 (2.68) -0.99 (1.34) 2 (27) -0.009
5 -38 (76) -0.09 (0.62) -0.20 (0.16) 0.15 (0.71) -0.04 (1.22) 20 (9) 0.000
6 83 (105) -0.65 (0.93) 0.14 (0.25) 0.80 (1.74) -1.09 (1.15) -20 (29) -0.019
7 -47 (50) 0.94 (0.73) 0.02 (0.02) -1.33 (0.63) 1.30 (1.54) -3 (11) 0.031
8 -1 (49) 0.07 (0.54) -0.14 (0.18) -0.07 (1.50) 0.11 (0.32) 20 (21) 0.000
9 - - - - - - -
10 - - - - - - -
11 -49 (50) -0.17 (0.17) -0.05 (0.09) -2.34 (3.23) -2.85 (3.65) -3 (5) 0.000
12 -31 (39) 0.79 (0.50) -0.05 (0.10) -1.36 (0.92) 0.96 (2.44) 3 (22) 0.020

Table 8.11: The same quantities shown in Tab.4.4 are reported for the event of November 2000. In the present table
data have been computed starting from the cluster trajectories (obtained using the "final geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position
and the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 averadge
N 133 94 1806 49 1803 255
tq 4 120 34 19 29 2 31
deltaq1 -0.95 0.00 -1.09 -1.95 -2.78 -2.79 -1.91
deltaq2 -0.02 -1.75 0.30 -0.09 0.00 -0.01 0.09
tz 51 84 56 43 32 30 44
deltaz1 38 186 298 364 181 119 226
deltaz2 -261 -26 -50 -62 -132 -156 -99
tT 61 71 37 14 32 3 34
deltaT1 0.3 -0.6 2.6 6.6 3.2 0.2 2.6
deltaT2 -2.8 0.0 -1.6 -5.2 -3.9 -5.8 -2.9
tTe 24 120 34 19 25 34 32
deltaTe1 0.0 -6.1 -3.9 -4.6 -2.3 -0.3 -2.9
deltaTe2 0.3 0.0 1.5 0.3 3.7 1.8 2.4
tRH 64 9 121 43 76 65 93
deltaRH1 45 22 51 50 51 72 51
deltaRH2 -10 -6 0 -4 -3 -18 -3
tPV 1 40 40 25 103 109 70
deltaPV1 0.00 0.18 0.34 0.17 0.41 0.29 0.35
deltaPV2 -1.80 -0.18 -0.08 -0.19 -0.03 -0.01 -0.11

Table 8.12: "Final geographical clustering" applied to 2000 event. For each variable and for each cluster t is reported
as well as the variation in the values of that variable (for each cluster) from the ending time to t and from
this t to the starting time (see section 6.1.4 for details). In the last column there is the weighted average
over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 4140 353 (112) 3.35 (1.29) 0.61 (0.06) 300.9 (4.8) 311.1 (1.5) 78 (12) 2 (2)
2 4140 309 (124) 3.76 (1.44) 0.60 (0.06) 299.9 (5.0) 311.3 (1.3) 38 (21) 2 (16)
3 4140 233 (110) 3.70 (1.42) 0.48 (0.14) 299.0 (4.1) 310.1 (2.7) 20 (8) 18 (14)
4 4140 275 (89) 3.10 (1.78) 0.39 (0.21) 301.0 (5.5) 310.5 (2.8) 18 (9) 15 (15)
5 354 415 (196) 1.81 (1.74) 1.33 (0.99) 302.4 (6.5) 308.0 (4.8) 18 (19) 12 (72)
6 1988 247 (88) 3.78 (0.86) 0.36 (0.24) 303.4 (2.9) 315.0 (2.6) 29 (14) 20 (13)
7 1993 158 (37) 3.75 (0.25) 0.36 (0.03) 296.5 (5.2) 307.8 (6.2) 27 (4) 54 (25)
8 354 374 (219) 2.04 (2.12) 1.02 (0.85) 301.8 (10.2) 308.1 (5.4) 21 (15) 8 (41)
9 - - - - - - - -
10 - - - - - - - -
11 227 596 (393) 1.19 (2.80) 1.69 (1.77) 307.2 (10.3) 311.0 (4.6) 7 (7) 42 (11)
12 1728 196 (10) 3.47 (0.66) 0.25 (0.11) 304.7 (2.8) 315.6 (4.9) 40 (1) 82 (43)

Table 8.13: The same quantities shown in Tab.4.3 are reported for the event of November 2000. In the present table
data have been computed starting from the cluster trajectories (obtained using the "initial geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position
and the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 46 (13) -0.49 (0.26) 0.02 (0.08) 1.22 (0.41) -0.19 (0.36) 56 (19) -0.027
2 27 (29) -0.19 (0.23) 0.01 (0.05) 0.43 (0.56) -0.10 (0.21) 13 (22) -0.010
3 41 (59) 0.05 (0.12) 0.10 (0.10) 0.05 (0.62) 0.21 (0.72) 10 (7) 0.004
4 8 (64) -0.34 (0.99) 0.04 (0.20) 0.06 (3.12) -0.95 (1.49) -1 (24) -0.017
5 -30 (66) 0.02 (0.53) -0.16 (0.14) -0.09 (0.69) -0.01 (1.09) 15 (11) 0.000
6 87 (103) -0.66 (1.03) 0.11 (0.27) 0.65 (1.48) -1.29 (1.75) -22 (30) -0.015
7 -97 (98) 1.96 (1.44) 0.05 (0.03) -3.03 (2.20) 2.46 (1.88) 4 (11) 0.054
8 -4 (41) 0.18 (0.45) -0.02 (0.17) -0.25 (1.34) 0.24 (0.35) 14 (17) 0.001
9 - - - - - - -
10 - - - - - - -
11 -49 (50) -0.17 (0.17) -0.05 (0.09) -2.34 (3.23) -2.85 (3.65) -3 (5) 0.000
12 -20 (25) 0.77 (0.50) -0.08 (0.10) -1.92 (1.41) 0.34 (2.99) 1 (23) 0.015

Table 8.14: The same quantities shown in Tab.4.4 are reported for the event of November 2000. In the present table
data have been computed starting from the cluster trajectories (obtained using the "initial geographical
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position
and the average properties of the cluster.
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quantity cluster1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 averadge
N 133 94 1728 127 65 1993
tq 4 120 34 54 55 28 33
deltaq1 -0.95 0.00 -1.06 -3.94 -3.38 -2.58 -1.89
deltaq2 -0.02 -1.75 0.19 3.09 3.17 -0.12 0.12
tz 5 8 5 6 6 3 4
deltaz1 38 186 289 447 226 173 227
deltaz2 -2615 -261 -469 -1024 -707 -1381 -993
tT 61 71 35 58 48 31 36
deltaT1 0.3 -0.6 2.3 13.9 4.4 2.2 2.5
deltaT2 -2.8 0.0 -2.0 -2.5 -2.1 -3.7 -2.8
tTe 24 120 32 52 73 25 32
deltaTe1 0.0 -6.1 -3.9 -3.7 -9.0 -1.9 -2.9
deltaTe2 0.3 0.0 1.0 8.4 7.2 3.4 2.4
tRH 64 9 69 11 121 73 68
deltaRH1 45 22 53 30 38 55 52
deltaRH2 -10 -6 -1 -5 0 -6 -4
tPV 1 40 40 72 55 103 70
deltaPV1 0.00 0.18 0.34 0.52 0.63 0.39 0.36
deltaPV2 -1.80 -0.18 -0.08 -0.21 -0.23 -0.02 -0.11

Table 8.15: "Initial geographical clustering" applied to 2000 event. For each variable and for each cluster t is reported
as well as the variation in the values of that variable (for each cluster) from the ending time to t and from
this t to the starting time (see section 6.1.4 for details). In the last column there is the weighted average
over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 4140 352 (108) 3.36 (1.33) 0.61 (0.12) 300.9 (4.8) 311.1 (2.5) 77 (14) 2 (2)
2 4140 308 (122) 3.80 (1.53) 0.60 (0.13) 299.8 (5.0) 311.4 (2.6) 38 (21) 2 (16)
3 4140 248 (110) 3.73 (1.47) 0.54 (0.22) 299.5 (4.3) 310.8 (2.8) 16 (7) 13 (5)
4 2054 217 (106) 4.24 (1.31) 0.47 (0.19) 297.7 (3.9) 310.4 (1.5) 19 (10) 26 (21)
5 130 564 (225) 0.35 (1.38) 2.04 (1.33) 305.7 (7.2) 306.9 (3.1) 25 (27) 7 (76)
6 4081 194 (79) 3.78 (0.67) 0.33 (0.20) 300.4 (4.0) 311.9 (3.6) 30 (11) 36 (24)
7 3313 177 (74) 4.07 (0.87) 0.32 (0.10) 299.2 (4.4) 311.5 (3.9) 24 (9) 13 (20)
8 189 411 (270) 1.73 (2.73) 1.59 (1.15) 299.4 (11.0) 304.5 (3.4) 21 (16) 3 (46)
9 59 170 (62) 2.81 (0.99) 0.48 (0.05) 288.9 (4.0) 297.1 (7.0) 34 (21) 29 (0)
10 - -) -) -) -) -) -) -)
11 189 622 (422) 0.59 (3.18) 1.90 (1.94) 302.8 (9.3) 304.6 (6.3) 9 (8) 58 (15)
12 1287 223 (46) 2.71 (0.12) 0.20 (0.15) 306.1 (4.5) 314.8 (4.5) 40 (2) 92 (54)

Table 8.16: The same quantities shown in Tab.4.3 are reported for the event of November 2000. In the present table
data have been computed starting from the cluster trajectories (obtained using the "direct clustering"
algorithm) so as all trajectories gathered together into one cluster had the average position and the average
properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 47 (16) -0.52 (0.32) 0.02 (0.09) 1.27 (0.58) -0.22 (0.46) 57 (19) -0.028
2 27 (28) -0.19 (0.26) 0.01 (0.05) 0.44 (0.59) -0.09 (0.26) 13 (22) -0.010
3 47 (67) -0.02 (0.49) 0.01 (0.18) -0.33 (1.09) -0.41 (0.67) 12 (7) -0.001
4 57 (97) -0.68 (1.23) 0.28 (0.28) 1.01 (2.25) -0.96 (2.08) -10 (19) -0.024
5 -72 (79) 0.22 (0.11) -0.31 (0.23) -0.11 (0.27) 0.64 (0.57) 23 (15) 0.001
6 -1 (54) 0.49 (0.76) 0.03 (0.12) -1.20 (0.63) 0.15 (2.10) 1 (15) 0.027
7 -13 (26) 0.31 (0.53) 0.03 (0.02) -0.62 (0.44) 0.22 (1.27) 2 (11) 0.017
8 -31 (40) 0.22 (0.43) -0.15 (0.20) 0.11 (1.68) 0.77 (0.88) 4 (4) 0.001
9 -118 (119) 2.30 (2.51) 0.37 (0.25) -4.93 (4.09) 1.53 (2.98) 9 (39) 0.002
10 - - - - - - -
11 -90 (91) 0.11 (0.47) -0.11 (0.07) -2.34 (3.29) -2.05 (3.58) 3 (12) 0.000
12 -72 (89) 1.19 (0.25) -0.15 (0.19) -1.40 (1.18) 2.22 (1.11) -4 (30) 0.017

Table 8.17: The same quantities shown in Tab.4.4 are reported for the event of November 2000. In the present table
data have been computed starting from the cluster trajectories (obtained using the "direct clustering"
algorithm) so as all trajectories gathered together into one cluster had the average position and the average
properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 averadge
tq 3 7 32 9 31 51 4 25
deltaq1 -0.26 -1.40 -3.10 -1.41 -1.66 -3.41 -0.11 -2.08
deltaq2 1.58 2.97 2.78 4.17 1.51 0.39 0.92 2.02
tz 3 3 4 1 5 6 5 4
deltaz1 20 17 22 11 27 37 3 23
deltaz2 -127 -123 -119 -264 -56 -41 -256 -103
tT 3 8 33 16 9 82 61 28
deltaT1 0.8 2.3 4.8 4.5 1.1 6.2 0.3 3.2
deltaT2 -4.7 -3.9 -5.2 -4.6 -1.6 -1.3 -2.8 -3.5
tTe 34 13 28 5 31 121 24 40
deltaTe1 0.0 -1.7 -3.6 0.8 -4.0 -3.6 0.0 -2.7
deltaTe2 -0.2 4.5 2.4 7.1 3.1 -0.4 0.2 2.2
tRH 66 70 121 70 109 115 64 99
deltaRH1 71 64 44 55 59 29 45 52
deltaRH2 -12 -7 0 -26 0 0 -10 -4
tPV 64 94 79 6 23 73 1 65
deltaPV1 0.35 0.42 0.42 0.23 0.32 0.45 0.00 0.38
deltaPV2 -0.11 -0.02 -0.03 -0.24 -0.23 -0.04 -1.83 -0.14

Table 8.18: "Direct clustering" applied to 2000 event. For each variable and for each cluster t is reported as well as
the variation in the values of that variable (for each cluster) from the ending time to t and from this t to
the starting time (see section 6.1.4 for details). In the last column there is the weighted average over the
cluster population.
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8.3 Cluster analysis of the first phase of 2002 event
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Figure 8.5: Clusters of trajectories arriving over Trentino in the period from 24/11/02 18 UTC to 25/11/02 09 UTC
obtained from the "direct clustering" algorithm. In the first plot each curve is the average, in the physical
space, of all trajectories belonging to that cluster. The average position every 1 hour is marked by a small
circle, the position every 24 hours by a big one. The number of trajectories for each cluster is reported. In
the following plots there are respectivelly the average height of the clusters above the surface, the average
height above the mean sea level of the cluster (and of the terrain beneath them) and the average water
concentration.
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Figure 8.6: Clusters of trajectories arriving over Trentino in the period from 24/11/02 18 UTC to 25/11/02 09 UTC
obtained from the "direct clustering" algorithm. In the plots there are the average relative humidity,
the average potential vorticity, the average potential temperature and the average equivalent potential
temperature of the clusters. The clusters have been marked by different colors and circles of different
size according to figure 8.1.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 357 (126) 3.36 (1.80) 0.41 (0.14) 302.3 (4.9) 312.6 (1.0) 76 (12) 2 (3)
2 2760 326 (147) 3.67 (2.07) 0.40 (0.13) 301.3 (5.5) 312.5 (1.1) 34 (16) 1 (5)
3 2760 293 (159) 3.64 (1.82) 0.36 (0.09) 301.2 (4.9) 312.3 (1.2) 22 (5) 11 (11)
4 1699 378 (117) 2.17 (0.98) 0.29 (0.03) 304.7 (3.2) 311.6 (1.1) 14 (5) 12 (2)
5 2760 312 (132) 2.78 (1.44) 0.36 (0.05) 303.2 (5.4) 311.9 (4.6) 22 (20) 18 (23)
6 2760 269 (139) 2.92 (1.34) 0.29 (0.03) 302.2 (4.4) 311.2 (1.6) 56 (21) 32 (27)
7 1061 114 (21) 5.10 (0.39) 0.33 (0.16) 296.8 (1.4) 312.1 (2.0) 41 (6) 5 (21)
8 - - - - - - - -
9 - - - - - - - -
10 - - - - - - - -
11 816 496 (176) 1.51 (2.65) 0.38 (0.10) 304.4 (5.6) 309.2 (7.1) 12 (11) 75 (27)
12 883 230 (2) 2.20 (0.62) 0.35 (0.02) 306.9 (1.7) 314.1 (0.1) 31 (14) 72 (30)

Table 8.19: The same quantities shown in Tab.4.5 are reported for the first phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"final geographical clustering" algorithm) so as all trajectories gathered together into one cluster had the
average position and the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 35 (29) -0.47 (0.49) 0.01 (0.02) 1.30 (0.89) 0.01 (0.72) 60 (19) -0.015
2 15 (19) -0.07 (0.10) 0.01 (0.02) 0.36 (0.56) 0.16 (0.58) 11 (26) -0.002
3 32 (45) 0.22 (0.39) 0.06 (0.09) -0.30 (0.94) 0.29 (0.32) 8 (10) 0.008
4 33 (52) 0.44 (0.34) 0.01 (0.05) -0.48 (0.31) 0.85 (0.94) -35 (15) 0.008
5 -42 (53) 0.06 (0.66) -0.05 (0.09) 0.14 (0.83) 0.36 (2.10) 29 (19) 0.002
6 -12 (55) 0.33 (0.55) -0.02 (0.05) -0.34 (1.19) 0.60 (1.57) -4 (22) 0.011
7 -1 (6) 0.23 (1.16) 0.12 (0.07) -0.35 (0.52) 0.30 (2.71) 2 (15) 0.003
8 - - - - - - -
9 - - - - - - -
10 - - - - - - -
11 -13 (88) -0.29 (3.87) -0.10 (0.01) 0.77 (9.64) -0.03 (1.25) -18 (19) -0.002
12 -46 (52) -0.12 (0.03) -0.10 (0.00) -3.42 (2.00) -3.90 (1.98) 26 (13) -0.001

Table 8.20: The same quantities shown in Tab.4.6 are reported for the first phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"final geographical clustering" algorithm) so as all trajectories gathered together into one cluster had the
average position and the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 averadge
tq 78 3 7 6 7 22
deltaq1 -0.55 -2.02 -0.46 -1.68 -3.99 -1.13
deltaq2 -0.67 -0.01 -0.20 -0.01 0.73 -0.20
tz 0 0 5 5 2 3
deltaz1 0 0 236 134 192 129
deltaz2 23 -1640 -1492 -1011 -1300 -993
tT 96 73 9 8 8 33
deltaT1 1.7 0.8 2.3 2.4 5.0 2.2
deltaT2 -0.1 3.0 -5.6 -1.9 -2.1 -2.3
tTe 78 2 121 1 22 57
deltaTe1 -1.5 -0.2 0.3 0.8 -3.8 -0.1
deltaTe2 1.5 9.3 -4.4 2.8 8.7 0.9
tRH 1 52 65 51 55 45
deltaRH1 0 23 64 48 39 41
deltaRH2 -11 -18 -27 -14 -12 -18
tPV 1 12 16 37 70 21
deltaPV1 0.00 0.01 0.11 0.33 0.47 0.17
deltaPV2 -0.14 -0.27 -0.17 -0.18 -0.24 -0.18

Table 8.21: "Final geographical clustering" applied to the first phase of 2002 event. For each variable and for each
cluster t is reported as well as the variation in the values of that variable (for each cluster) from the ending
time to t and from this t to the starting time (see section 6.1.4 for details). In the last column there is the
weighted average over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 358 (124) 3.35 (1.78) 0.41 (0.14) 302.3 (4.8) 312.6 (1.1) 77 (13) 2 (2)
2 2760 327 (146) 3.66 (2.04) 0.40 (0.13) 301.3 (5.5) 312.5 (1.2) 34 (16) 1 (5)
3 2760 294 (159) 3.64 (1.80) 0.36 (0.08) 301.2 (4.9) 312.3 (1.2) 22 (5) 11 (11)
4 1733 375 (116) 2.20 (0.97) 0.29 (0.03) 304.5 (3.2) 311.6 (1.1) 13 (5) 13 (2)
5 2760 312 (133) 2.83 (1.51) 0.36 (0.05) 303.2 (5.4) 312.0 (4.7) 21 (20) 18 (24)
6 2760 271 (137) 2.90 (1.32) 0.29 (0.02) 302.2 (4.3) 311.2 (1.6) 57 (20) 32 (27)
7 1027 109 (11) 5.11 (0.19) 0.34 (0.15) 296.8 (1.4) 312.1 (2.0) 40 (2) 6 (19)
8 - - - - - - - -
9 - - - - - - - -
10 - - - - - - - -
11 850 483 (175) 1.52 (2.64) 0.39 (0.11) 303.8 (6.0) 308.6 (7.9) 11 (11) 72 (27)
12 883 230 (2) 2.20 (0.62) 0.35 (0.02) 306.9 (1.7) 314.1 (0.1) 31 (14) 72 (30)

Table 8.22: The same quantities shown in Tab.4.5 are reported for the first phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"initial geographical clustering" algorithm) so as all trajectories gathered together into one cluster had
the average position and the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 34 (26) -0.45 (0.25) 0.01 (0.01) 1.28 (0.77) 0.05 (0.23) 60 (16) -0.015
2 15 (19) -0.08 (0.09) 0.00 (0.01) 0.35 (0.57) 0.11 (0.61) 11 (27) -0.002
3 33 (47) 0.22 (0.40) 0.06 (0.08) -0.27 (0.92) 0.33 (0.35) 8 (9) 0.008
4 32 (52) 0.42 (0.39) 0.01 (0.05) -0.48 (0.31) 0.77 (1.07) -35 (15) 0.007
5 -41 (53) 0.09 (0.76) -0.03 (0.08) 0.20 (1.04) 0.51 (2.70) 28 (19) 0.003
6 -13 (60) 0.28 (0.55) -0.03 (0.06) -0.39 (1.29) 0.40 (1.39) -4 (22) 0.010
7 -1 (3) 0.28 (1.09) 0.14 (0.08) -0.40 (0.44) 0.38 (2.57) 3 (16) 0.004
8 - - - - - - -
9 - - - - - - -
10 - - - - - - -
11 -13 (86) -0.24 (3.92) -0.10 (0.01) 0.75 (9.66) 0.09 (1.45) -17 (19) -0.002
12 -46 (52) -0.12 (0.03) -0.10 (0.00) -3.42 (2.00) -3.90 (1.98) 26 (13) -0.001

Table 8.23: The same quantities shown in Tab.4.6 are reported for the first phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"initial geographical clustering" algorithm) so as all trajectories gathered together into one cluster had
the average position and the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 averadge
tq 78 3 7 7 46 23
deltaq1 -0.55 -2.02 -0.46 -1.83 -5.94 -1.17
deltaq2 -0.67 -0.01 -0.20 0.02 5.25 -0.14
tz 0 0 5 3 6 3
deltaz1 0 0 236 136 178 128
deltaz2 23 -1640 -1492 -1029 -892 -990
tT 96 73 9 8 119 34
deltaT1 1.7 0.8 2.3 2.7 4.8 2.2
deltaT2 -0.1 3.0 -5.6 -2.3 4.9 -2.4
tTe 78 2 121 1 46 57
deltaTe1 -1.5 -0.2 0.3 0.6 -6.4 -0.1
deltaTe2 1.5 9.3 -4.4 2.8 21.9 0.9
tRH 1 52 65 47 121 44
deltaRH1 0 23 64 50 29 41
deltaRH2 -11 -18 -27 -16 0 -18
tPV 1 12 16 67 61 32
deltaPV1 0.00 0.01 0.11 0.33 0.31 0.16
deltaPV2 -0.14 -0.27 -0.17 -0.16 -0.59 -0.17

Table 8.24: "Initial geographical clustering" applied to the first phase of 2002 event. For each variable and for each
cluster t is reported as well as the variation in the values of that variable (for each cluster) from the ending
time to t and from this t to the starting time (see section 6.1.4 for details). In the last column there is the
weighted average over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 358 (125) 3.36 (1.80) 0.41 (0.14) 302.3 (4.9) 312.6 (1.3) 77 (12) 2 (3)
2 2403 301 (129) 4.00 (1.82) 0.42 (0.12) 300.4 (4.9) 312.5 (1.3) 36 (18) 1 (5)
3 2760 295 (159) 3.63 (1.79) 0.37 (0.09) 301.2 (4.9) 312.3 (1.2) 22 (5) 10 (10)
4 2039 338 (127) 2.73 (1.39) 0.31 (0.11) 303.3 (3.7) 311.9 (1.2) 16 (10) 12 (3)
5 2760 316 (127) 2.85 (1.50) 0.36 (0.05) 303.2 (5.0) 312.0 (4.3) 21 (20) 17 (26)
6 2760 273 (134) 2.93 (1.29) 0.29 (0.04) 302.2 (4.3) 311.3 (1.5) 58 (19) 30 (26)
7 925 101 (6) 5.12 (0.53) 0.31 (0.22) 296.5 (1.8) 311.7 (2.5) 34 (10) 8 (18)
8 30 189 (110) 4.57 (1.27) 0.53 (0.16) 295.9 (3.7) 309.3 (0.3) 18 (9) 3 (61)
9 -) -) -) -) -) -) -) -)
10 -) -) -) -) -) -) -) -)
11 879 475 (176) 1.63 (2.68) 0.38 (0.08) 304.1 (5.3) 309.2 (6.2) 12 (12) 73 (25)
12 956 222 (6) 2.33 (0.49) 0.34 (0.01) 306.4 (1.1) 313.9 (0.3) 32 (13) 74 (32)

Table 8.25: The same quantities shown in Tab.4.5 are reported for the first phase of the event of November 2002. In
the present table data have been computed starting from the cluster trajectories (obtained using the "direct
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position and
the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 34 (29) -0.46 (0.39) 0.01 (0.03) 1.29 (0.92) 0.03 (0.52) 59 (17) -0.015
2 16 (20) -0.07 (0.17) 0.01 (0.01) 0.38 (0.54) 0.19 (0.61) 11 (26) -0.002
3 33 (45) 0.19 (0.56) 0.05 (0.10) -0.21 (0.96) 0.29 (0.95) 13 (8) 0.007
4 29 (51) 0.40 (0.33) 0.02 (0.07) -0.47 (0.30) 0.70 (0.82) -32 (13) 0.009
5 -36 (51) 0.04 (0.69) -0.05 (0.10) 0.08 (0.81) 0.24 (2.00) 27 (18) 0.001
6 -13 (66) 0.26 (0.47) -0.02 (0.10) -0.44 (1.35) 0.28 (1.16) -4 (22) 0.009
7 0 (3) 0.29 (1.08) 0.15 (0.10) -0.38 (0.48) 0.43 (2.53) 2 (16) 0.003
8 -8 (10) 0.06 (0.04) 0.01 (0.01) -0.01 (0.53) 0.18 (0.63) -3 (8) 0.000
9 - - - - - - -
10 - - - - - - -
11 -10 (128) -0.08 (4.18) -0.11 (0.05) 0.95 (10.03) 0.73 (2.77) -17 (18) 0.000
12 -55 (61) -0.05 (0.10) -0.09 (0.01) -2.93 (1.50) -3.18 (1.27) 25 (12) -0.001

Table 8.26: The same quantities shown in Tab.4.6 are reported for the first phase of the event of November 2002. In
the present table data have been computed starting from the cluster trajectories (obtained using the "direct
clustering" algorithm) so as all trajectories gathered together into one cluster had the average position and
the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 averadge
tq 25 7 10 78 32 8 7 16
deltaq1 -1.76 -3.29 -0.42 -4.42 -0.29 -0.65 -0.74 -0.94
deltaq2 1.86 5.54 0.40 1.84 1.81 1.87 0.57 1.26
tz 4 2 2 8 0 2 5 4
deltaz1 12 18 3 26 0 15 23 15
deltaz2 -67 -219 -91 -16 -137 -133 -143 -120
tT 8 8 10 96 33 8 9 17
deltaT1 1.5 5.6 1.7 9.9 2.9 2.9 2.3 2.8
deltaT2 -1.6 -4.7 -2.6 -0.3 -1.1 -2.3 -5.1 -3.0
tTe 43 6 79 65 2 1 121 60
deltaTe1 -3.4 -3.0 0.3 -3.0 2.2 1.3 0.1 0.2
deltaTe2 3.7 10.6 -1.3 5.1 4.4 2.9 -3.5 0.6
tRH 67 55 33 1 52 42 67 50
deltaRH1 34 47 8 0 14 54 65 42
deltaRH2 -11 -16 -12 -24 -8 -20 -27 -19
tPV 70 81 2 4 12 37 16 23
deltaPV1 0.33 0.56 0.00 0.02 0.02 0.43 0.13 0.19
deltaPV2 -0.17 -0.27 -0.08 -0.31 -0.22 -0.25 -0.18 -0.20

Table 8.27: "Direct clustering" applied to the first phase of 2002 event. For each variable and for each cluster t is
reported as well as the variation in the values of that variable (for each cluster) from the ending time to t
and from this t to the starting time (see section 6.1.4 for details). In the last column there is the weighted
average over the cluster population.
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8.4 Cluster analysis of the second phase of 2002 event
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Figure 8.7: Clusters of trajectories arriving over Trentino in the period from 25/11/02 21 UTC to 26/11/02 15 UTC
obtained from the "direct clustering" algorithm. In the first plot each curve is the average, in the physical
space, of all trajectories belonging to that cluster. The average position every 1 hour is marked by a small
circle, the position every 24 hours by a big one. The number of trajectories for each cluster is reported. In
the following plots there are respectivelly the average height of the clusters above the surface, the average
height above the mean sea level of the cluster (and of the terrain beneath them) and the average water
concentration.
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Figure 8.8: Clusters of trajectories arriving over Trentino in the period from 25/11/02 21 UTC to 26/11/02 15 UTC
obtained from the "direct clustering" algorithm. In the plots there are the average relative humidity,
the average potential vorticity, the average potential temperature and the average equivalent potential
temperature of the clusters. The clusters have been marked by different colors and circles of different
size according to figure 8.1.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 3220 351 (118) 4.11 (1.49) 0.43 (0.14) 303.2 (5.0) 315.8 (1.0) 77 (17) 2 (2)
2 3220 304 (139) 4.66 (1.72) 0.39 (0.16) 301.7 (5.4) 315.9 (1.1) 33 (17) 2 (6)
3 3220 238 (131) 4.63 (1.33) 0.36 (0.15) 301.5 (4.2) 315.6 (1.1) 15 (4) 15 (5)
4 340 350 (53) 2.54 (0.79) 0.34 (0.02) 305.7 (2.8) 313.8 (0.5) 26 (1) 2 (25)
5 340 377 (70) 1.77 (1.06) 0.26 (0.06) 307.4 (0.8) 313.2 (2.4) 4 (3) 36 (21)
6 3220 191 (86) 4.16 (1.06) 0.26 (0.12) 301.9 (4.6) 314.7 (2.7) 31 (8) 16 (19)
7 3220 210 (116) 4.09 (1.23) 0.28 (0.17) 302.7 (4.1) 315.3 (1.6) 21 (9) 7 (19)
8 - - - - - - - -
9 - - - - - - - -
10 - - - - - - - -
11 340 388 (74) 3.16 (1.89) 0.31 (0.04) 304.2 (1.3) 313.8 (4.4) 1 (1) 41 (34)
12 3220 193 (82) 4.16 (1.09) 0.22 (0.06) 304.0 (4.8) 316.9 (4.1) 36 (9) 66 (44)

Table 8.28: The same quantities shown in Tab.4.7 are reported for the second phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"final geographical clustering" algorithm) so as all trajectories gathered together into one cluster had the
average position and the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 51 (28) -0.68 (0.47) 0.03 (0.09) 1.74 (1.16) -0.13 (0.48) 59 (22) -0.026
2 28 (32) -0.24 (0.38) 0.03 (0.06) 0.72 (0.56) 0.03 (0.59) 16 (31) -0.009
3 81 (93) 0.60 (0.64) 0.05 (0.23) -0.94 (1.55) 0.73 (1.05) 13 (8) 0.024
4 3 (4) 0.44 (0.25) 0.02 (0.03) -0.51 (0.86) 0.81 (0.10) -18 (8) 0.001
5 -138 (148) -1.05 (1.25) 0.02 (0.02) 0.32 (1.88) -2.72 (1.67) 29 (1) -0.003
6 -6 (46) 0.12 (0.50) -0.05 (0.15) -0.43 (0.74) -0.09 (1.88) -10 (8) 0.007
7 4 (28) 0.03 (0.42) 0.10 (0.15) -0.45 (0.44) -0.41 (1.11) -7 (9) 0.002
8 - - - - - - -
9 - - - - - - -
10 - - - - - - -
11 84 (113) -0.66 (4.38) -0.07 (0.02) 3.33 (9.43) 1.73 (2.85) -2 (1) -0.002
12 -29 (36) -0.04 (0.30) 0.02 (0.10) -1.95 (2.19) -2.10 (2.44) 9 (5) -0.002

Table 8.29: The same quantities shown in Tab.4.8 are reported for the second phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"final geographical clustering" algorithm) so as all trajectories gathered together into one cluster had the
average position and the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 averadge
tq 40 3 7 10 67 9 27
deltaq1 -0.85 -0.63 -2.39 -4.25 -0.71 -0.50 -1.23
deltaq2 0.00 0.01 -0.03 -0.24 0.42 0.10 0.08
tz 4 8 4 3 7 3 5
deltaz1 264 93 151 360 202 235 196
deltaz2 -472 -280 -1340 -1949 -419 -750 -727
tT 8 3 7 10 9 121 19
deltaT1 1.9 0.3 3.1 14.9 -0.8 4.7 2.0
deltaT2 -1.2 -7.8 -4.3 -9.3 -3.0 1.5 -3.1
tTe 40 121 10 4 121 3 53
deltaTe1 -4.2 -0.3 -0.2 1.6 -6.2 -0.1 -2.4
deltaTe2 1.4 -6.5 2.3 2.2 -0.9 3.5 0.4
tRH 82 21 57 31 103 34 65
deltaRH1 63 66 51 71 56 66 59
deltaRH2 -8 -9 -18 -37 -3 -29 -13
tPV 35 10 64 43 24 70 41
deltaPV1 0.36 0.21 0.38 0.61 0.07 0.21 0.28
deltaPV2 -0.08 -0.08 -0.15 -0.21 -0.09 -0.10 -0.10

Table 8.30: "Final geographical clustering" applied to the second phase of 2002 event. For each variable and for each
cluster t is reported as well as the variation in the values of that variable (for each cluster) from the ending
time to t and from this t to the starting time (see section 6.1.4 for details). In the last column there is the
weighted average over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 3220 351 (113) 4.11 (1.45) 0.43 (0.12) 303.1 (7.1) 315.7 (5.6) 78 (16) 2 (3)
2 3220 305 (136) 4.68 (1.72) 0.41 (0.11) 301.6 (7.5) 315.8 (5.6) 34 (19) 1 (6)
3 3220 239 (131) 4.64 (1.28) 0.35 (0.14) 301.4 (6.8) 315.5 (5.6) 16 (4) 15 (5)
4 340 350 (53) 2.54 (0.79) 0.34 (0.02) 305.7 (2.8) 313.8 (0.5) 26 (1) 2 (25)
5 344 373 (75) 1.85 (1.25) 0.26 (0.06) 307.2 (1.7) 313.2 (2.4) 3 (3) 36 (21)
6 3219 187 (87) 4.17 (1.04) 0.26 (0.10) 301.9 (4.5) 314.7 (2.5) 31 (8) 16 (19)
7 3219 205 (116) 4.07 (1.16) 0.28 (0.17) 302.8 (4.1) 315.3 (1.5) 20 (9) 6 (20)
8 - - - - - - - -
9 - - - - - - - -
10 - - - - - - - -
11 340 388 (74) 3.16 (1.89) 0.31 (0.04) 304.2 (1.3) 313.8 (4.4) 1 (1) 41 (34)
12 3215 194 (80) 4.15 (1.03) 0.22 (0.05) 304.0 (4.8) 316.8 (4.1) 35 (9) 67 (44)

Table 8.31: The same quantities shown in Tab.4.7 are reported for the second phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"initial geographical clustering" algorithm) so as all trajectories gathered together into one cluster had
the average position and the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 51 (25) -0.70 (0.41) 0.03 (0.09) 1.76 (0.84) -0.17 (0.49) 58 (23) -0.028
2 26 (28) -0.25 (0.35) 0.03 (0.06) 0.77 (0.41) 0.07 (0.57) 15 (31) -0.009
3 81 (91) 0.62 (0.45) 0.07 (0.22) -1.06 (1.11) 0.65 (0.88) 15 (7) 0.025
4 3 (4) 0.44 (0.25) 0.02 (0.03) -0.51 (0.86) 0.81 (0.10) -18 (8) 0.002
5 -136 (147) -1.04 (1.24) 0.02 (0.03) 0.32 (1.88) -2.69 (1.67) 29 (3) -0.004
6 -10 (43) 0.05 (0.55) -0.05 (0.14) -0.32 (0.80) -0.18 (1.94) -9 (6) 0.004
7 15 (30) 0.06 (0.36) 0.09 (0.16) -0.44 (0.34) -0.30 (0.86) -6 (10) 0.003
8 - - - - - - -
9 - - - - - - -
10 - - - - - - -
11 84 (113) -0.66 (4.38) -0.07 (0.02) 3.33 (9.43) 1.73 (2.85) -2 (1) -0.002
12 -31 (37) 0.03 (0.24) 0.03 (0.11) -2.06 (2.24) -2.02 (2.19) 6 (6) 0.001

Table 8.32: The same quantities shown in Tab.4.8 are reported for the second phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"initial geographical clustering" algorithm) so as all trajectories gathered together into one cluster had
the average position and the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 averadge
tq 7 58 7 31 67 9 18
deltaq1 -0.62 0.00 -2.50 -0.49 -0.71 -0.50 -1.17
deltaq2 0.04 0.00 -0.03 -3.41 0.42 0.10 0.09
tz 8 0 4 0 7 3 6
deltaz1 213 -4 162 0 202 235 198
deltaz2 -462 1412 -1394 1234 -419 -750 -753
tT 7 121 7 28 9 121 19
deltaT1 3.6 1.1 3.5 3.4 -0.8 4.7 2.9
deltaT2 -5.5 6.5 -4.4 -3.1 -3.0 1.5 -4.0
tTe 121 68 4 117 121 3 74
deltaTe1 0.1 -14.3 -0.2 -6.4 -6.2 -0.1 -1.2
deltaTe2 -4.2 19.1 2.4 -2.0 -0.9 3.5 -0.8
tRH 85 22 57 67 103 34 75
deltaRH1 62 53 51 71 56 66 58
deltaRH2 -7 -49 -18 -48 -3 -29 -12
tPV 34 1 64 13 24 70 45
deltaPV1 0.29 0.00 0.39 0.51 0.07 0.21 0.27
deltaPV2 -0.06 -0.57 -0.15 -0.64 -0.09 -0.10 -0.10

Table 8.33: "Initial geographical clustering" applied to the second phase of 2002 event. For each variable and for
each cluster t is reported as well as the variation in the values of that variable (for each cluster) from the
ending time to t and from this t to the starting time (see section 6.1.4 for details). In the last column there
is the weighted average over the cluster population.
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Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 3220 350 (117) 4.13 (1.47) 0.44 (0.17) 303.1 (5.0) 315.8 (1.1) 77 (19) 2 (3)
2 3151 277 (145) 4.93 (1.73) 0.41 (0.15) 300.8 (5.6) 315.7 (1.4) 31 (17) 2 (6)
3 3220 237 (122) 4.64 (1.29) 0.34 (0.14) 301.5 (4.1) 315.6 (1.1) 15 (5) 14 (5)
4 834 251 (96) 3.71 (1.13) 0.34 (0.02) 300.6 (5.3) 311.9 (2.4) 30 (7) 6 (21)
5 440 349 (63) 1.84 (0.99) 0.31 (0.13) 307.2 (0.6) 313.2 (2.4) 4 (3) 42 (17)
6 2826 209 (82) 3.85 (0.94) 0.27 (0.15) 304.3 (2.7) 316.4 (2.4) 26 (7) 10 (22)
7 3220 212 (103) 3.97 (1.01) 0.28 (0.15) 302.7 (4.1) 315.0 (2.4) 17 (12) 13 (25)
8 - - - - - - - -
9 - - - - - - - -
10 - - - - - - - -
11 371 379 (64) 3.02 (2.03) 0.31 (0.04) 304.5 (1.7) 313.7 (4.5) 1 (1) 39 (36)
12 2826 211 (50) 3.96 (0.99) 0.22 (0.07) 305.4 (3.2) 317.8 (3.6) 37 (9) 77 (50)

Table 8.34: The same quantities shown in Tab.4.7 are reported for the second phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"direct clustering" algorithm) so as all trajectories gathered together into one cluster had the average
position and the average properties of the cluster.

δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 51 (32) -0.71 (0.59) 0.03 (0.09) 1.78 (1.31) -0.19 (0.52) 59 (26) -0.026
2 25 (30) -0.23 (0.38) 0.03 (0.06) 0.61 (0.65) -0.03 (0.70) 15 (31) -0.009
3 78 (87) 0.65 (0.94) 0.07 (0.12) -0.99 (1.93) 0.82 (1.38) 14 (7) 0.025
4 -10 (15) 0.23 (0.21) -0.01 (0.03) -0.33 (0.69) 0.35 (0.70) -12 (17) 0.002
5 -120 (133) -0.60 (1.18) 0.04 (0.07) -0.73 (2.43) -2.42 (1.39) 28 (3) -0.002
6 16 (32) -0.25 (0.29) 0.06 (0.10) -0.72 (0.56) -1.50 (1.13) -17 (10) -0.008
7 2 (45) 0.22 (0.66) 0.02 (0.07) -0.45 (0.62) 0.13 (1.35) -2 (7) 0.009
8 - - - - - - -
9 - - - - - - -
10 - - - - - - -
11 72 (101) -0.51 (4.52) -0.04 (0.04) 2.63 (10.12) 1.42 (2.53) -1 (1) -0.002
12 -45 (65) 0.11 (0.51) -0.03 (0.06) -1.83 (1.79) -1.53 (2.22) 7 (6) 0.004

Table 8.35: The same quantities shown in Tab.4.8 are reported for the second phase of the event of November 2002.
In the present table data have been computed starting from the cluster trajectories (obtained using the
"direct clustering" algorithm) so as all trajectories gathered together into one cluster had the average
position and the average properties of the cluster.
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quantity cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 cluster 7 averadge
tq 6 7 43 3 7 13 9 17
deltaq1 -1.26 -1.89 -2.27 -0.19 -4.33 -2.08 -1.63 -1.60
deltaq2 1.50 3.65 0.56 0.91 4.01 2.80 0.69 1.30
tz 4 3 7 8 3 2 3 5
deltaz1 19 21 26 8 34 16 24 20
deltaz2 -96 -106 -44 -35 -175 -119 -79 -74
tT 7 5 10 4 10 10 115 20
deltaT1 3.5 4.1 1.3 0.3 11.6 3.6 4.8 2.7
deltaT2 -5.4 -8.2 -1.9 -7.9 -8.7 -2.6 0.8 -3.8
tTe 37 10 115 121 4 21 3 65
deltaTe1 0.1 -1.3 -5.4 -0.2 -0.3 -2.0 -0.1 -1.8
deltaTe2 -1.4 2.4 -0.2 -5.5 2.3 5.2 3.4 -0.2
tRH 25 94 99 22 28 46 37 51
deltaRH1 60 78 55 65 74 40 66 58
deltaRH2 -16 -2 -4 -8 -27 -11 -26 -12
tPV 61 22 19 10 43 68 70 42
deltaPV1 0.49 0.39 0.16 0.20 0.65 0.42 0.18 0.31
deltaPV2 -0.16 -0.08 -0.10 -0.14 -0.20 -0.18 -0.07 -0.13

Table 8.36: "Direct clustering" applied to the second phase of 2002 event. For each variable and for each cluster t is
reported as well as the variation in the values of that variable (for each cluster) from the ending time to t
and from this t to the starting time (see section 6.1.4 for details). In the last column there is the weighted
average over the cluster population.
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8.5 Budget analysis over the initial phase of the 1966 event

Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 2760 363 (133) 3.04 (1.47) 0.48 (0.18) 299.5 ( 6.4) 308.8 (4.3) 77 (22) 2 ( 2)
2 1920 259 (140) 4.30 (1.65) 0.48 (0.26) 295.9 ( 6.6) 308.7 (4.7) 31 (11) 6 (13)
3 2509 202 (125) 4.77 (1.56) 0.36 (0.20) 295.0 ( 5.3) 309.2 (4.3) 14 ( 7) 16 (14)
4 2488 218 ( 78) 3.47 (2.03) 0.41 (0.18) 295.0 ( 5.2) 305.4 (7.4) 19 (13) 15 (10)
5 418 219 ( 43) 2.43 (1.652) 0.47 (0.14) 300.2 ( 2.8) 307.8 (6.8) 7 (11) 28 (24)
6 1779 172 ( 50) 4.00 (1.49) 0.22 (0.17) 297.5 ( 3.5) 309.7 (6.3) 53 (23) 32 (22)
7 913 115 ( 52) 4.57 (0.96) 0.18 (0.15) 293.8 ( 3.5) 307.4 (5.0) 34 (27) 11 (11)
8 1675 286 (107) 1.36 (1.01) 0.55 (0.25) 294.6 ( 6.9) 298.8 (5.1) 45 (18) 18 (11)
9 1475 405 (149) 1.19 (0.95) 0.61 (0.23) 296.4 ( 7.4) 300.2 (5.8) 35 (25) 19 (11)
10 398 280 (145) 2.13 (1.28) 0.60 (0.24) 290.5 ( 8.0) 296.9 (6.7) 41 (26) 20 (16)
11 979 510 ( 98) 0.58 (0.41) 0.59 (0.13) 301.4 ( 3.3) 303.4 (3.4) 7 ( 5) 19 (16)
12 698 131 ( 38) 4.64 (0.43) 0.17 (0.18) 300.0 ( 2.6) 314.2 (3.2) 42 ( 7) 42 (27)

Table 8.37: 1966 - First phase (03/11/1966 03UTC - 03/11/1966 18UTC): evaporation from area 6.

δz[dam] δq[g kg �

1] δPV [PVU] δθ[K] δθe[K] δoro[dam] δQTOT [kg m �

2h �

1]
1 32 (28) -0.44 (0.40) -0.01 (0.17) 1.38 (1.28) 0.14 (1.38) 47 (31) -0.017
2 45 (28) -0.47 (0.75) 0.00 (0.19) 1.15 (1.62) -0.16 (2.33) 15 (15) -0.013
3 95 (76) -0.42 (1.64) 0.14 (0.33) 2.34 (2.73) 1.20 (3.49) 16 (16) -0.010
4 37 (95) 0.26 (1.38) 0.02 (0.24) 0.63 (2.83) 1.43 (4.24) -15 (33) 0.014
5 -12 (42) 0.49 (1.20) -0.06 (0.14) -0.41 (2.51) 1.01 (3.40) 25 (19) 0.002
6 -19 (84) 0.89 (1.25) -0.03 (0.26) -1.47 (2.99) 1.07 (4.07) 0 (33) 0.028
7 -26 (23) 0.82 (1.12) 0.04 (0.10) 0.52 (1.18) 2.86 (7.03) -16 (16) 0.013
8 -99 (81) 0.32 (0.52) -0.14 (0.37) -0.30 (2.00) 0.63 (2.67) -8 (31) 0.008
9 -70 (70) 0.06 (0.42) 0.01 (0.36) -2.76 (3.22) -2.61 (2.63) 7 (23) 0.001
10 -3 (44) -0.12 (0.92) 0.02 (0.36) -1.09 (3.26) -1.47 (4.15) 19 (27) -0.001
11 -61 (67) 0.05 (0.34) 0.01 (0.19) -1.12 (1.82) -0.95 (5.47) 5 (20) 0.001
12 0 (54) 0.71 (0.78) -0.11 (0.42) 0.97 (3.81) 3.11 (4.43) 5 (17) 0.007

Table 8.38: 1966 - First phase (03/11/1966 03UTC - 03/11/1966 18UTC): evaporation from area 6.
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8.6 Budget analysis over the final phase of the 1966 event

Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 1840 361 (140) 2.37 (1.96) 0.72 (0.41) 299.9 ( 6.7) 307.2 (6.6) 77 (20) 2 ( 2)
2 1264 316 (194) 3.49 (2.83) 0.68 (0.65) 298.6 ( 7.0) 309.1 (6.8) 29 (11) 3 ( 4)
3 1724 305 (181) 3.41 (2.72) 0.75 (0.53) 297.3 ( 6.1) 307.5 (6.0) 16 ( 8) 9 ( 8)
4 1780 311 (200) 2.62 (2.37) 0.80 (0.70) 294.8 ( 6.6) 302.6 (4.6) 14 (12) 16 (12)
5 611 357 (147) 1.31 (1.25) 0.84 (0.55) 296.5 ( 4.7) 300.6 (4.1) 2 ( 4) 12 (11)
6 346 270 (196) 3.14 (2.41) 0.74 (0.57) 297.7 ( 6.8) 307.0 (4.8) 54 (18) 26 (21)
7 360 250 (184) 3.70 (2.54) 0.65 (0.51) 297.7 ( 6.0) 308.8 (3.7) 38 (26) 13 (18)
8 1745 410 (205) 1.36 (1.46) 1.07 (1.03) 295.6 ( 6.9) 299.8 (5.1) 48 (20) 17 (13)
9 992 490 (230) 1.03 (1.41) 1.16 (1.29) 296.8 ( 8.2) 299.9 (6.2) 29 (20) 15 ( 9)
10 87 778 (203) 0.23 (0.68) 2.02 (1.83) 307.2 ( 9.5) 308.0 (8.1) 29 (14) 22 (10)
11 1460 502 (227) 0.78 (1.17) 1.09 (1.00) 297.0 ( 8.8) 299.4 (7.0) 18 (22) 45 (24)
12 32 67 ( 25) 4.90 (0.55) 0.75 (0.59) 298.5 ( 2.5) 313.3 (3.8) 45 (10) 36 (20)

Table 8.39: 1966 - Third phase (04/11/1966 15UTC - 05/11/1966 00UTC): evaporation from area 4.

δz[dam] δq[g kg �

1] δPV [PVU] δθ[K] δθe[K] δoro[dam] δQTOT [kg m �

2h �

1]
1 20 (30) -0.43 (0.89) -0.06 (0.18) 0.90 (1.52) -0.28 (2.14) 49 (31) -0.014
2 7 (17) -0.07 (0.56) -0.01 (0.18) 0.28 (0.84) 0.07 (1.72) 17 (11) -0.001
3 49 (92) -0.30 (1.34) 0.00 (0.32) 3.16 (4.78) 2.41 (3.11) 14 (14) -0.006
4 -52 (83) 1.07 (1.29) -0.23 (0.73) 0.06 (3.29) 3.19 (5.27) -12 (26) 0.036
5 - 7 (39) 0.59 (0.93) -0.03 (0.19) -0.62 (1.91) 1.12 (2.83) 6 ( 8) 0.006
6 -52 (94) 0.59 (1.40) -0.03 (0.69) 0.02 (3.71) 1.86 (5.23) 15 (24) 0.003
7 11 (67) 0.35 (1.84) 0.02 (0.46) 1.92 (2.43) 2.97 (4.73) -17 (14) 0.003
8 - 1 (97) -0.01 (1.05) 0.09 (0.62) 1.00 (3.18) 0.99 (2.80) 5 (35) 0.000
9 -13 (78) -0.19 (0.69) 0.23 (0.91) -1.07 (2.22) -1.65 (2.40) 6 (26) -0.004
10 -25 (81) 0.00 (0.07) 0.35 (1.93) -0.31 (5.38) -0.30 (5.31) -34 (39) 0.000
11 -65 (158) 0.25 (1.06) -0.19 (1.01) 0.25 (4.43) 1.02 (5.35) -50 (103) 0.006
12 -4 ( 17) -0.20 (0.71) 0.34 (0.95) 4.39 (3.77) 4.11 (4.85) 5 (13) 0.000

Table 8.40: 1966 - Third phase (04/11/1966 15UTC - 05/11/1966 00UTC): evaporation from area 4.

8.7 Budget analysis over the whole 2002 event
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Figure 8.9: Average in time (over the period from 24/11/02 18 UTC to 26/11/02 18 UTC) and in
space of evaporation over various areas (x-axis). Lagrangian specific humidity vari-
ation in kgm

�

2h
�

1 over various areas computed following the refined method of Eq.
4.18) for the whole event.

Nk z[dam] q[ gkg ] PV [PVU] θ[K] θe[K] h[dam] t[h]
1 5980 354 (142) 3.80 (1.99) 0.43 (0.26) 302.6 (6.0) 314.3 (2.8) 64 (48) 3 (5 )
2 4093 255 (157) 5.01 (2.31) 0.41 (0.29) 299.8 (6.4) 314.8 (3.3) 18 (10) 5 (11
3 5430 252 (154) 4.34 (1.99) 0.36 (0.26) 301.1 (5.3) 314.3 (3.0) 16 (10) 11 (7
4 3378 306 (150) 3.01 (1.56) 0.29 (0.16) 302.6 (5.2) 312.0 (3.1) 15 (12) 11 (6
5 3328 357 (155) 2.23 (1.82) 0.28 (0.14) 304.2 (7.0) 311.3 (6.3) 4 (8) 26 (15 )
6 5632 246 (135) 3.35 (1.60) 0.28 (0.20) 303.4 (4.2) 313.9 (3.6) 48 (28) 13 (10
7 3514 191 (129) 4.18 (1.76) 0.35 (0.33) 302.1 (4.7) 314.9 (3.1) 27 (38) 8 (9 )
8 615 301 (139) 3.30 (1.50) 0.37 (0.20) 299.3 (7.5) 309.4 (7.0) 29 (20) 8 (8 )
9 481 404 (123) 2.72 (1.24) 0.40 (0.18) 303.5 (5.8) 312.1 (4.7) 40 (22) 3 (6 )
10 - - - - - - - -
11 1381 318 (70) 4.66 (1.48) 0.39 (0.12) 302.1 (3.8) 316.3 (3.8) 0 (1) 34 (16
12 4566 224 (99) 3.45 (1.88) 0.29 (0.15) 304.4 (5.3) 315.2 (4.3) 42 (11) 43 (23

Table 8.41: Table summarizing the number of trajectories flowing at least for one time step over the 12 macroareas
of Fig. 4.16 during the whole event of November 2002. The average values (along with the respective
variances) of the height above the surface, of the specific humidity, of the potential vorticity, of the
potential temperature, of the equivalent potential temperature and of the height of the surface underneath
are reported for the the air parcels staying over the various macroareas. The last column gives the average
number of time steps spent by trajectories over each area.
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δz[dam] δq[ gkg ] δPV [PVU] δθ[K] δθe[K] δh[dam] δQTOT [
kg
m2h ]

1 48 (54) -0.71 (0.95) 0.01 (0.34) 1.62 (2.36) -0.34 (1.98) 77 (65) -0.037
2 23 (28) 0.02 (0.76) 0.04 (0.33) 0.58 (1.31) 0.65 (1.82) -15 (26) 0.002
3 54 (70) 0.37 (1.34) 0.08 (0.42) -0.68 (2.59) 0.34 (2.62) 17 (21) 0.020
4 15 (50) 0.38 (0.88) -0.02 (0.22) -0.42 (1.48) 0.69 (2.52) -33 (35) 0.010
5 -67 (104) 0.48 (1.32) 0.01 (0.17) -0.59 (2.93) 0.81 (4.90) 27 (20) 0.007
6 14 (64) -0.11 (0.86) 0.05 (0.30) -0.61 (1.63) -0.95 (2.53) 1 (32) -0.006
7 -3 (42) 0.52 (1.27) 0.02 (0.26) -0.54 (1.28) 0.90 (3.33) -10 (16) 0.019
8 -5 (44) -0.07 (0.82) 0.00 (0.18) -0.32 (1.48) -0.52 (2.10) 5 (24) 0.000
9 31 (41) -0.33 (0.56) -0.02 (0.18) 1.22 (1.60) 0.28 (0.94) 70 (56) -0.001
10 - - - - - - -
11 317 (131) -4.63 (2.96) -0.09 (0.28) 11.71 (6.21) -1.09 (4.01) 0 (4) -0.008
12 -42 (70) -0.16 (1.09) -0.04 (0.21) -0.78 (2.69) -1.24 (3.53) 10 (14) -0.004

Table 8.42: The mean variations (as well as the respective variances) of the height of the trajectories in passing
over various macroareas (Fig. 4.16) are reported for the whole event of November 2002. The same is
done for the variations of the specific humidity, of the potential vorticity, of the potential temperature,
of the equivalent potential temperature and of the height of the surface underneath of the parcels. The
last column gives the quantity of water vapour (computed by the formula 4.6) gained or lost by all the
trajectories over each area.
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