Phase II (2019-'21) |
---|
II P1: FIRE Induced Element Cycling II P2: Nutrient cycling & vegetation II P3: Microorganisms & soil structure II P4: Linking bioturbation with fluxes II P5: Erosion-Climate-Vegetation coupling (SECCO) II P6: Bio-Geomorphology II P7: Biota, fracture, thresholds II P8: Stress constrained landscape modeling II P9: Bridging timescales with modeling II P10: Landscape evolution from Thermochronology II P11: DeepES - Weathering Geochemistry II P12: DeepES - Microbial element cycling II P13: DeepES - Geophysical Imaging II P14: DeepES - Microbial activity II P15: DeepES - Geomicrobiology II A1: Plant available water storage II A2: Bioweath |
Phase I (2016-'18) |
---|
I P1: Plant Traits and Decomposition I P2: Coupled Modelling I P3: Biofilms & Weathering I P4: Sediment storage & Connectivity I P5: Crustweathering I P6: Root Carbon I P7: Paleoclimate I P8: Imaging of Weathering front I P9: Sediment Transport I P10: Phosphorus solubilization I P11: Green & Grey world I P12: Biogenic Weathering I P13: Microbiological Stabilization I A3: Carbon & Nutrient Fluxes |
Investigator Names and Contact Info:
Chilean Collaborators Involved:
Postdoc:
Global distribution and ecological strategy of burrowing mammals
supervisor: Prof. N. Farwig, co-supervisor: Prof. R. Brandl
PhD:
supervisor: Prof. N. Farwig, co-supervisors: Prof. R. Brandl, Prof. J. Bendix
PhD:
MSc:
The impact of burrowing animals on soil surface conditions along the Chilean latitudinal gradient.
supervisor: Prof. N. Farwig, co-supervisors: Prof. R. Brandl, Prof. J. Bendix
MSc:
supervisor: Prof. N. Farwig, co-supervisors: Prof. R. Brandl, Prof. J. Bendix
BSc:
supervisor: Prof. N. Farwig, co-supervisors: Prof. R. Brandl, Prof. J. Bendix
BSc:
Project summary:
Ground-dwelling animals act as ecosystem engineers that affect the structure and composition of the vegetation and thereby also ecosystem processes like soil formation, soil erosion, decomposition and carbon storage. Bioturbation has also links to the vertical and horizontal redistribution of solid and soluble particles in landscapes and increases the patchiness of water and nutrient availability with consequences for plant assemblages and for soil organisms. However, most published studies on bioturbation have a local perspective and comprehensive, spatially explicit analyses of the influence of ground-dwelling organisms on rates of sediment and nutrient redistribution in the weathering zone and on hill slopes covering a broad climatic gradient are lacking. We thus aim to i) estimate the spatial distribution, abundance and functional type of the bioturbators in the EarthShape primary focus areas and along its climate gradient, ii) quantify the vegetation along this gradient and determine its relation to distribution and abundance of burrowing animals, iii) quantify effects of bioturbators on soil, nutrients and sediment redistribution, and iv) derive catchment-wide redistribution and erosion rates of the effects of bioturbators by using remote sensing and modelling techniques based on plot-derived transfer functions between climate, vegetation and abundance of species.